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SECTION I
INTRODUCTION

This is the second volume of the final technical report for the
project "Distributed Database Control and Allocation,” sponsored by Rome
Air Development Center, contract number F30602-81-C0028. This volume

describes work on the performance snalysis of concurrency control algo-
rithms,

This volume is a collection of papers written during the course of
the project, each paper analyzing from a different perspective the
results of the performance study. It consists of five sections. 8ec~-
tion I presents a study that analytes the relationship between the per-
formance of the two phase locking algorithm and the following system
parameters: access distribution of the database, data granularity, tran-
saction size and multiprogramming level. In a distributed database sys-
tem, communication delay is also a major factor affecting the perfor-
mance of a concurrency control algorithm, and we present in Section 1I
an analysis of the relationship between the performance of the two phase
locking algorithm and the communication delay. Another important factor
that affects the performance of a concurrency control algorithm is the
number of read~only transactions relative to the number of write tran-

sactions — ratio of read-only to write transactions. In Section III we

present an analysis of the relationship between the performance of the

twvo phase locking algorithm and their ratio. )
piié Section IV extends the analysis to algorithms based on timestamps ;E;
;32; by presenting a comparison of the performance of three distributed con- : i
ﬁ;ig currency control algorithms — the Basic Timestamp, Multiple Version NER
T Timestamp, and two phase locking algorithm. o
:q&; ) In Section V we analyze the two phase locking algorithm in wmore ;;x
:%:} detail and refine the algorithm into nine algorithms. In addition, we :i
v reevaluate the previous two timestamp algorithms in more detail and . >
':f: analyze a nev timestamp based algorithm — the Dynamic Timestamp algo- jix
,:%: rithm, We then compare the performance of the twelve algorithms. :;;
& 23
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SECTION 11
PERFORMANCE OF TWO PHASE LOCKING*
Wente K. Lin
Jerry Nolte
\l
~l
¢ * This paper a
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pgeated in the Proceedings of the 1982 Berkeley Workshop
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ta Management and Computer Networks.
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2. Performance of Two Phase Locking

Abgtract

Simulation and analytical modeling of the two phase locking in a
DBMS is the subject of this study. It is only part of a larger project
that is studying the performances of various concurrency _control —and
reliability algorithms in a distributed DBMS. In the simulation model,
the application environment is characterized by the transaction size --
thet number of %ockatﬁe un;ﬁs regue:ted bytgach transaction -- and t?e

8 environpen number o ansactions _runni ncurrent

z;ulggprogrlnnggg EZV .S total number og ocknbie ung 8 i: the dataz
base, and the distribution of accgszes to these_ lockable units. These
environments are varled for different simrlation runs. Output from
these simulation runs includes the probabilities ?f .a lock request
involved in a confljct and deadloc reasectxyely P? ngd PD), and the
average waiting delay (WT) and its standard deviation (DV) of a blocked
lock request. The results show that the ;Esten behaves quite similarly
for different access distributions — PC, PD, WT, and DV all increase
more than linearly with the uult;ptogrlnmxgg level and the transaction
size; the increase of PC is faster with multiprogramming level than with
the transaction size, and the reverse is true for PD, WI, and DV.
Regression analysis on the simulation results reveals interesting rela-
tionships between the granularity of the lockgble units and PC, PD, and
WI. Because o; the allumgtton of fixed deln{ excludxng blocking due to
lock conflict) between two consecutive lock requests by a tramsaction,
the tenqltn,apglx to a centralized DBMS with little IO delgy  variationm,
and a distributed DBMS with little communication delay variation.
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2.1 Introduction

In the two phase locking protocol as described in Gray [1], during
the first phase transactions accummulate locks incrementally, acquiring
each lock as its need arises, and during the second phase, release each
lock as soon as its need ends. But to spare the end users the responsi-
bility of requesting and releasing locks, most DBMSs implement implicit
locking. The DBMSs request and release the locks automatically when the
transactions request the data items and when the transactions end,
respectively. Because a DBMS, not knowing enough of the syntax and
semantics of the transactions, is ignorant of the time when each data
item is no longer needed, it can only release the locks held by a tran-
saction wvhen the transaction ends.. Besides, if locks held by a transac-
tion are released before the transaction ends, then the abortion of the
transaction causes roll-backs of all other transactions that have read
data released by the aborted transaction. To avoid the problems dis-
cussed above, most DBMS release locks held by a transaction when the
transaction ends. The performance of thig modified two-phase locking is
the subject of this study.

In this study we use several measures of system performance. We
emphasize the blocking and restart behavior of transactions., We concen-
trate on the basic underlying factors of conflict, deadlock, and wait
duration. The performance variables are listed as follows:

1. the average probability of a lock request conflicting with another
one;

2. the average probability of a lock request causing a deadlock;

4
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3. the average waiting delay of a conflicting lock request;

o "','l"f‘l."’ ¢

. S

4. and the standard deviation of this delay. {1
Besides locking protocol, the performance of a DBMS depends on several Ej
system and application parameters: %SE
1. the Sverage number of locks requested by a transaction (tramsaction o
size); o

2. the maximum number of transactions running concurrently (the mul- :?E
tiprogramming level); e

3. the ’ize of the group that is the unit of locking (lockable unmit ¢
size); - ‘_:

4. the size of the database (total number of lockable units); T
5. and the distribution of lock requests to the lockable units of the ;;ﬂ

database.
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T{j Two distributions of lock requests to the lockable units are simu-
(__ lated. The random access model assumes that all lockable units have the
L:ﬁ same probability of being accessed by a lock request. The 20/80 model
QQE assumes that 202 of the database is accessed 802 of the time.

Using simulation and statistical data analysis techniques, this
paper studies the relationships between the performance of a DBMS and

those system and application parameters affecting it.

A few researchers have attempted similar studies. In Lin [2], the

same approach taken in this study was used to evaluate two timestamping

i&: protocols, but its results could not be extended to the two-phase lock-
ékf ing protocol. In Naka [3], the result confirmed that concurrent updat-
;:: ing of the database by tranaactioné“degrades the performance of a DBMS.
;} In Spit [4], the two phase locking and the modified version (described
'i: above) were found to perform equally well in system-2000. In Mun (5],
:E deadlock resolution methods were studied, and three were found to be
_e‘ superior: restarting the smallest, the one holding the least locks, and
‘.‘ the one having consumed the least cpu time. In addition, it was found
Eii that simultaneous reduction of the sizes of the lockable wunit and the
;;j transaction improves the performance. But the oversimplified definition
fo of performance as the cpu utilization made the results less useful. 1In
: Ries [6], the scope and the objective of its simulation were much more
:if ambitious than the previous three. Nevertheless, it emphasized the
ﬁ? effects of the size of the lockable unit on the performance of the DBMS,
g which was defined as the cpu and IO utilizations, plus in some cases the
)& response time and the system through-put. The main model required tran-
:is sactions to obtain all the required locks before they started, and the
N request-as-needed model was only briefly studied. It had many interest-
Z%; ing results showing how the size of the lockable unit interacts with the
y— system and application parameters to effect the performance. But its
iﬁj assumption that the multiprogramming level has no affect on performance ;Eﬁf
JE. is contradicted by this study. Also, performance was not related to :xﬂﬁ
Qf system and application parameters as precisely and quantitatively as in :;_.:
. the present study. A
Y T
iﬁ This study expands on Lin (2] and Ries [4], and presents the ‘;E?E

= results in the same precise form as that of Lin [2]. The second subsec- f}:f.
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}{;.-‘} tion discusses the simulation model; the third subsection presents and ’_"_l'-
( analyzes the results of the random access model; the fourth subsection .
presents and summarizes the results of the 20/80 model; and the fifth '
:.". subsection summarizes the results of this study. g
N i
_, o
fﬁ::_"\: 2.2 Simulation Model -_"f’
._-_? A complete description of a simulatioc wmodel for a DBMS must _.‘-‘:
e include the database, the transactions, . Smputer system, and the
S output parameters. ..-
SO Y
.~ The database consists of DZ (Database siZe) lockable units of equal
::;:j:; size. The size of each lockable unit is irrelevant to our model. The ,:ﬁ
database size DZ varies among different simulation rums. t_i
:::,j_;:: Ve simulate two different access distributions to the database: the ‘::Z:
- random access model in which all lockable units are equally likely to be f";:;
:‘:‘?" accessed, and the 20/80 access model in which 20 of the database is -
_ accessed 80% of the time. g
o .
SNEN All transactions request only exclusive locks. Within each simula-
j'.:’: ‘tion run, all transactions request the same number TZ (Transaction siZe)
'. ) of lockable units, but TZ varies among different simulation runs. Each n
:::.:::;j transaction requests its lockable units sequentially, but different }:::E‘
_f transactions request lockable units asynchronously. When a transaction _.‘
" requests for a lockable unit, a random number is drawn to select ome -]
i among all the lockable units in the database except those held by the p.j
S requesting transaction; thus a transaction never requests the same lock- 'Tﬁ_{;
\ able unit more tham once. If the drawn lockable unit is locked by .;{i;
._ another transaction, the requesting tramsaction is queued at the end of 1
.;.,; a FIFO queue. Otherwise, it sets a lock on the drawn lockable unit and Lj
.:::\': vaite one time unit before requesting another lockable unit. Since pro- ;..:'_3
5}:\ cessing a lock request is assumed to be instantaneous, the simulation .:
::.. timer is advanced one unit only after all outstanding lock requests have j
.-;t been proielned. The assumption that a transaction waits a unit of time 3!1’
-_,::::L:: (after obtaining a lockable unit) before requesting another ome, implies 7:;:]
\;:f::- that it takes ome time unit to retrieve a lockable unit from the data- .
l'": base, to wait for the cpu, and to process it. Each transaction releases
- .“ .;l.
_____________________ © )
e
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all ite lockable units after its completion or abortion,

We model the computer system at a high functional lev2l. Tie cpu,
I0 devices, and other hardware components are invisible -n the simula-
tion model; their existence is implied by the processing time required
for each 1lockable unit discussed previously. The system is a closed
multiprogramming system, i.e., the number of transactions running con-
currently remains at a constant level MP (MultiProgramming level); & new
transaction starts as soon as one completes or aborts. Nonetheless MP
varies among different simulation rums., A lock request conflicts if it
requests a lockable unit already held by another transaction. The sys-
tem maintains a lock with a FIFO queue for each lockable unit and places
ﬁ;? conflicting lock requests into the -queue. It checks for deadlocks as
. soon as a lock request conflicts, If it detects a deadlock, the tran-
saction of the conflicting lock request aborts and restarts immediately;
it restarts with a new randomly dr-swn sequence of lock requests. Check-

ings of conflicts and deadlocks are instantaneous,

For each simulation run, the output includes the fraction of con-
flicting lock requests (which is the same as the probability of a lock
request conflicting with another lock request PC), the fraction of con-
flicting lock requests causing deadlocks (which is the same as the pro-
bability of a lock request causing a deadlock PD), and the average wait-
ing of a blocked lock request (WT) and its standard deviation (DV).

2.3 Simulation Results of the Random Access Model

::ﬁ Sixty four simulations were run for 4 values of multiprogramming
level (MP), transaction size (TZ), and database size (DZ) each. The
results are presented and analyzed in this subsection in the following
order: PC, PD, WTI, and DV. The analysis consists of three steps: visual
inspection, regression analysis, and examination of the regression equa-

tions.

The results of PC are presented in Figure 2.1. The figure shows
that for a fixed DZ, PC increases with both MP and TZ, and the increase
o) is larger with MP than with TZ. This behavior is explained by the fol-
lowing observation during the simulation runs: the number of
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5'5 transactions deadlocked increases faster with the transaction size than e
{’. vith ‘the multiprogramming level. Since a deadlocked transaction aborts ;;;
‘:j: and releases all held locks as soon as the deadlock occurs, the total ;:i
f;gj number of locks outstanding (not released) increases slower with the 3;:
-Sig transaction size than with the multiprogramming level. ié&i
If a diagonal line is drawn from the top left to the bottom right M'.
jfj of each table in the figure, each number below the line is always larger ji{‘
t:' than the opposite number across the line. Assuming DZ is fixed, two ﬁ?%?
%J elements across the diagonal line represent the same load (L) defined as o
L the product of MP and TZ divided by DZ. For example, a system with 16 L?;;
'i: transactions, each requesting 7 locks, imposes the same load (112 lock- :fg
EC; able units) on the database as a system with 7 transactions, each -
jri requesting 16 locks. This line shows that with the same load, the sys- K
b tem with higher multiprogramming level has higher probability of con- -
g;? flict than the system with higher transaction size. This behavior is i% -
;i; explained by the following observation during the simulation runms, E
o Assuming the load L and the database size DZ are fixed, then on the K
ﬂ__ average, a larger MP with smaller TZ implies 1less deadlocks and more pbg
3¥1 locks outstanding. Since each lockable unit has the same probability of :
ﬁ{ being accessed, more outstanding locks means higher probability of con-~ -
2 flict. But higher probability of conflict does not necessarily means it?'
_: longer response time, because smaller transaction size causes conflict- ﬁ:_f
:{: ing requests to wait less and to deadlock less, as will be shown. lkéf
:jg The differences across the diagonal line diminish as the database .;f
~ size DZ increases -- that is, the probability of conflict (PC) is h;
'ja approximately proportional to the load L when the load on the database E:jl
SE; is light, because increasing the database size without increasing the §E§
»{: multiprogramming level or the transaction size is equivalent to decreas- 333
*;h ing the load on the database. §£;
':E We applied regression analysis to the data in Figure 2.1, and found :i;
.fg equation (2.1) a good fit. The residuals -- the differences between the :ET
;i actual values and the values predicted by the equation -— are within t%:
! 2.57 of- the actual values. We did a few simulation runs with larger "'{
;i: values of DZ, MP, and TZ, and found that the equation is s8till a good i;ii
Wy v

fit for DZ of up to 12384, MP of up to 128, and TZ of up to 32; but we

"l‘l P
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found that when the transaction size TZ gets much larger than 32, the

equation under-estimates the probability of conflict (PC) substantially.

BC = o7z TRP=T3;1 B4 S0t Szt 08-0-dL (2.1)
L = ¥RpE-IZ

Next, we use the regression equation to examine the relationship

between the size of the lockable unit and the probability of comflict.

If we split each lockable unit into k smaller units, then the data-
base size increases to k times its original size. Because of the
smaller lockable units, a transaction must request more lockable units;
thus the transaction size increases to w (l1<w<k) times its origimnal
size, The value of w depends on how well the database is placed before
the split. If the database is originally well placed, then all the data
items contained in the original TZ lockable units are wanted by the
transaction =-- 1o frivolous date items are retrieved. In this case,
vhen & lockable unit is split into k smaller omes, the transaction size
increases to Kk times its original size (w=k), Otherwise, if the data-
base is badly placed before the split, then the lockable units retrieved
by e transaction contain a lot of unwanted data items. Thus, after the
split, a transaction may request the same number of lockable units and
still obtain all the data items it needs (w=1). 1In most cases, however,

v will be larger than one and smaller than k.

Replacing DZ and TZ by kDZ and wIZ, equation (2.1) becomes equation
(2.2),

PC” =t x PC (2.2)
vhere
DzO.ZBLt TzO.l3Lr '1-(0.13Lw)/k
t = GEo1)U-ISLE L TSTUIIBLNITE (2.24) o
asnd ;f
r = (kw)/k. e
A
Setting v to k, equation (2.2a) becomes (2,2b). %:f
e
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SO

o 1

{ - t= ;UT‘II'. (2.2b)

_. Since k is larger than one, t is smaller than one. Thus smaller lock-

":‘i‘:i able units imply a smaller probability of conflict whenever the database

:&:f is well placed. But as we will show later, smaller probability of con-

\. flict with larger transaction size may result in a higher probability of

: deadlock and longer transaction response time. As L approaches zero,

‘:\: i.e., the load is light, t approximates one, and the difference between

N PC and PC’ becomes insignificant.

- Setting w to one in equation (2.2a) results in equation (2.2¢).

N pz0+28Lr 47 0.13Lz

e

N t = Goo1)0-35LE L I=T0C2BLITE (2.2¢)

where

o r = (k-1)/k

TN t = 1/k  as L approaches zero.

{

:: Equation (2.2¢) shows that when the load L is smaller tham 100Z, which

'N is within our simulation range and is realistic, t is less than onme.

::::::5 Therefore, if the database is badly placed, smaller lockable units imply

s a smaller probability of conflict. In this case, since the transaction

B size remains the same, a smaller probability of conflict does imply a

.::'_f-:'. smaller probability of deadlock and shorter response time. '

‘_.:: To sum up, smaller lockable units always imply smaller probability l*
of conflict, '—]

The probabilities of deadlock (PD) are presented in Figure 2.2. \

, Notice that PD is the conditional probability of a lock request causing ‘:'.:jl

a8 deadlock, given that the request conflicts. The unconditional proba- .

::ﬁ_"-zi bility of deadlock is the product of PC and PD, which is presented in l!{

Figure 2.3. These data are also analyzed in three steps: visual inspec-

tion, regression analysis, and analysis of the regression equation. 1

:1 Figure 2.3 shows that for a fixed DZ, PD increases with both the

-r.::'_.'_ multiprogramming level MP and the transaction size TZ. But in contrast

’-‘._"':. to PC, the increase is larger with TZ than with MP,
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cach table
the number below the line is alwvays smaller t. an the

If the diagonal line discussed previously is drawn for
in PFigure 2.3,
corresponding number across the line, in sharp contrast t. ¥C uf Figure
2.1.
lowver multiprogramming level has a higher probability of deadlock than a

Thus assuming equal loads L, a system vwith larger transactions and

system with shorter transactions and higher multiprogramming level.

Similarly, regression analysis shows equation (2.3) a good fit for
the data of Figure 2.3.

o.olz(m_l)l 007-002410 Tz3o61-3 +48L

PD” = PDxPC = = 5.1 4 || A

MP x TZ
DZ

(2.3)

We must emphasize that PP is the probability of deadlock for a lock

request, not a transaction. Equation (2.3) shows that when the load L
is larger than 802, the coefficient ¢ is smaller than the coefficient b,
Therefore, for a fixed load of 802 or greater, a system with shorter
transactions and higher multiprogramming level has a higher probability
of deadlock than a system with longer transactions and lower multipro-~
This rather

apparent from inspection of Figure 2.3.

gramming level. surprising behavior is not immediately
This behavior occurs because
when the load is high and transactions are long, transactions deadlock
and abort frequently; and abortions of long transactions means that more
locks are freed. Thus there is less probability of a lock request caus-

ing a deadlock.

To analyze the relationship between PD and the lockable unit size,
we replace DZ by kDZ and TZ by wIZ, and equation (2.3) becomes equation

(2.4).

PD" = t x PD’ (2.4)
where
(Mp-1)0+54LT gz3.7Lr 3.5-(3.7Lw)/k
t = o2 ILE L TTY=T2TLRTR (2.4a)
and
r = (l-w/k)

Setting v to k, equation (2.4a) becomes (2.4b), which shows that if and

L

LTS
DA0RKINAL S ANAD N

MO W

NG (SR

s
.

L A0
)

=
-,
-

.
.

'-\\.'N e e e
ALK
“as

------
_______
----------
...........



P,
it h
P ELd
272 e &4 K

-

F‘s-
l'{.l

§ XY

-

only if the 1load L is less than one, which is within the range of our

simulation and is realistic, t is greater than omne.

1 06( l’L)

t=k (2.4b)

Thus, when the database is well placed, smaller lockable units imply a
larger probability of deadlock.

Setting w to 1 for the originally badly placed system, equation
(2.4a) becomes (2.4c), which shows that, within the range of our simula-
tion, t is less than one. Therefore smaller lockable units reduce the
probability of deadlock.

In summary, larger lockable units in a well placed system and
smaller lockable units in a badly placed system reduce the probability

of deadlock for lock requests and transactions,

(m_l ) 00 541:: Tza . 7Lt
t = STILEISYSUZIILITR (2.4c)

where
r = (l_llk)o

The average waiting times of a conflicting lock request are shown
in PFigure 2.4, which shows that the average waiting of a conflicting
lock request increases with the multiprogramming level and the transac-
tion size, and the increase is larger with the transaction size than
with the multiprogramming level. The result is consistent with our
intuition, because a lock request blocked by a long transaction must
wait until the long transaction completes or aborts; and it takes longer
for a long transaction to complete or abort. Also, if a similar diago-
nal line is drawn for each table, the number above the line is always

larger than the corresponding number across the diagonal line.

Regression analysis shows equation (2.5) a good fit for the data of
Figure 2.4.

0.19(up-1)3+4(1#0.2)2-0.3 1,2.7(1+0.15)2+0.8
- DZR.I(E-U.WGQ-D.IB (2 05)

Assuming the database is well placed, to reduce the granularity of the

lockable units to 1l/k of its original size, we increase the database
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size DZ and tramsaction size TZ to kDZ and kIZ respectively in equation
(2.5), resulting in equation (2.6s). Equation (2.6a) shows that when
the load L is less than 1.4, which is realistic and within the range of
our simulations, smaller locksble units imply longer waitiang for a con-—
flicting lock request. The result is consistent with the earlier obser-
vation — longer transactions induce longer waiting.

- —0.41)2
T = 1+25-1.37(1-0.41) (2.6a)

Assuming the database is badly placed, to reduce the granularity of
the lockable units to 1/k of its original size we increase the database
size DZ to kDZ, but leave the transaction size TZ unchanged in equation
(2.5), resulting in equation (2.6b). Equation (2.6b) shows that when
the load is light and k is small, t is greater than one —— longer wait-
ing for a conflicting lock request., As shown earlier this is because
vhen a daéabase is badly placed and the load is light, reducing the size
of the lockable units reduces the probability of deadlock. With less
deadlocks, more transactions complete and less transactions abort.
Since a transaction takes longer to complete than to abort, a blocked
lock request waits loager.

v = pz4+17L(qL~0.08) ( 2.6b)
TEo1) 3~ LIGLAV: 4T 1 2= TRLUGLF03) L4  ITLTR=0 08I 20315

In summary, wvhether the database is well placed oxr badly placed,
smaller lockable units increase waiting delay for a blocked lock
request, except when load is extremely heavy, the database is badly

placed, and the reduction in lockable unit size is large.

We next examined the standard deviation of waiting delays. These

results can be summarized very simply.

Regression on the data of Figure 2.5 results in equation 2.7, which
shovs that the waiting delay may be approximated by an Erlangian distri-
bution.
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DV = 0.86 x WT (2.7)
DZ = 256 DZ = 1025
MP/TZ 7 10 12 16 MP/TZ 7 10 12 16
7 .077 .104 .118 .135 7 .020 .029 .034 .04
HECECEL R E B
16 174 .210 .224 .236 1% ;030 023 -8l ;38
DZ = 512 DZ = 2048
MP/TZ 7 10 12 16 MP/TZ 7 10 12 16
. 7 .040 .056 .066 .08l 7 .010 .015 .017 .023
ANy 10 .059 .08l .094 .112 10 .015 .022 .026 .034
Y5 12 .072 .097 .11l .130 12 .019 .026 .031 .04l
RN 16 .096 .127 .142 .160 16 .025 .036 .043 .055
;?i' PC : Probability of a Lock Request conflicting
W With Another Lock Request
3 Figure 2.1
DZ = 256 DZ = 1024
MP/TZ 7 10 12 16 MP/TZ 7 10 12 16
7. .031 .078 .112 .183 7 .006 .014 .026 .050
10 .039 .102 .143 .207 19 .008 019 .028 .08
12 .044 .115 .156 .218 12 (007 (019 033 (068
16 061 141 .179 .232 16 .007 .025 .040 .090
DZ = 512 DZ = 2048
MP/TZ 7 10 12 16 MP/TZ 7 10 12 16
7 .0l4 .037 .052 .102 7 .003 .006 .011 .024
10 .014 .041 .068 .130 10 .003 .006 .011 .024
12 .017 .049 .079 .144 12 .003 .009 .014 .029
16 .021 .067 .102 .168 16 .003 .009 .015 .034

PD : Conditional Probability of a Lock Request
Causing a Deadlock after Conflict

Figure 2.2
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o DZ = 256 bz = 1026 e
3 w/1z 7 10 12 16 Me/1z 7 10 12 16
Y ,
n.bi 19 0034 008k 07 (D847 b 80033 :000af :00%40 ;00383 )
- 12 0082 :823¢ 028t :8%1% 1% 80038 08133 :083%% 804 =0l
o DZ = 512 DZ = 2048 N
MP/TZ 7 10 12 16 MP/TZ 7 10 12 16 o

0006 .0021 .0034 .0083 000030 .00009 .00019 .0006

7 o

.0033 .0064 .0146 10 .000045 .00013 .00029 .0008
2 .0048 .0088 .0187 12 .000057 .00023 .00043

.0020 .0085 .0l145 .0269 16 .000075 .00032 .00063 .0019

PCxPD : Absolute Probability of a Lock Request
Causing a Deadlock after Conflict

1t s
AN O~
[ ]
S
-0
o

Figure 2.3
DZ = 256 DZ = 1024
MP/TZ 7 10 12 16 MP/TZ 7 10 12 16
7 3.76 6.18 7.85 11.01 7 3.09 4.49 5.60 8.26
10 4.64 8.25 10.55 14.40 10 3.19 4.93 6.42 10.57
12 5.36 9.52 12.09 15.70 12 3.35 5.34 7.25 11.80
16 7.27 12.52 15.24 18.65 16 3.54 6. 9.30 16.05
DZ = 512 DZ = 2048
MP/TZ 7 10 12 16 MP/TZ 7 10 12 16
7  3.33 5.12 6.60 9.72 71 2.94 4.11 5.00 7.01
10 3.66 6.18 8.50 13.37 10 3.01 4.39 5.42 8.13
12 3.88 7.19 9.91 15.28 12 3,07 4.49 S5.64 8.88
16 4.71 9.77 13.53 19.43 16 3.14 4.88 6.35 10.91
WI : Average Vaiti:g Time of a Conflicting
Lock Request aIter the Conflict

Figure 2.4

2.4 Results of 20/80 Access Model

N The results of simulating the 20/80 access model are shown in Fig-
Eﬂt; ures 2.6 through 2.10. They are similar to the results of the random
i;&; access model with heavier load. The reason is that when 20X of the data-
ﬁ;; base is wused 802 of the time, the ssgme load of the random sccess model
FE;; becomes s heavier load. The probability of conflict, the probability of :
é;;i deadlock, and the average waiting of a conflicting lock request still :i
E?j; increases with both the transaction size and the multiprogramming level. A
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DZ = 256 DZ = 1024
MP/TZ 7 10 12 16 MP/TZ 7 10 12 16
7 2,86 5.28 6.90 10.09 7 1.95 3.35 4.36 6.92
10 4.02 7.59 9.88 13.56 10 2.16 3.94 5.50 9.62
12 4.93 9.03 11.26 14.78 12 2.38 4.52 6.49 10.98
16 7.05 11.77 14.19 17.66 16 2.68 6.15 8.97 15.51
DZ = 512 DZ = 2048
MP/1Z 17 10 12 16 MP/TZ 7 10 12 16
7 2,29 4.08 5.44 8.61 7 1.80 2.80 3.49 5.46
10 2.78 3.43 7.76 12.31 10 1.89 3.02 4,06 6.9
ig Z.%g g.zg 3.22 }4.%2 12 1.83 3.2 4.;3 .
. «45 12,90 18.07 16 2. <92 5.52 10.58

DV : Standard Deviation of the Waiting Times of
Conflicting Lock Requests

Figure 2.5

The probability of conflict increases faster with the multiprogramming
level than with the transaction size, while the reverse is true for the
probability of deadlock and the average waiting of a conflicting lock
request. If diagonal lines are drawn for the tables (as previously
explained), the number below the 1line is always larger than the
corresponding number above the line for the probability of conflict, and
the opposite is true for the probability of deadlock and the average
waiting of a conflicting lock request. But the differences diminish as

the load becomes lighter.

Applying regression analysis to data in Figure 2.6 results in equa-
tion (2.8). Similar to equation (2.1), it shows that the coefficient b
is alvays larger than the coefficient c. The major difference between
this equation and equation (2.1) is that the coefficient a of equation

(2.8) is equal 2.7, much larger than the 0.72 of equation (2.1).

3.7(p-1)1+08+1.51L 1;1.08+0.58L
- 57 T1-133I739L (2.8)

To examine the relationship between the probability of conflict and the

lockable unit size, we replace TZ by wIZ and DZ by kDZ in equation

(2.8), and obtain equation (2.9).
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=3
5‘5 PC’ =t xPC (2.9)

where

Dzl.39rl. '1+(0.58Lv)lk
t = $U-SBFL I STEL  TF(ITIVLNITR (2.9a)
and
b 3 - 1 - '/ko

If the database is well placed, then v is equal to k, and equation
(2.9a) becomes equation (2.9b), which shows that smaller lockable units
reduce the probability of conflict, consistent with the result of the
random access case.

t = x0-81 (2.9b)

If the database is badly placed, then w is equal to one, and equation
(2.9a) becomes equation (2.9c). Equation (2.9c) shows that if the load
L is less 50X, which is within the range of our simulations and is real-
istic, smaller 1lockable units reduce probability of conflict. In sum—
mary, vhether the database is originally well or badly placed, reducing
lockable units reduces the probability of conflict., This result is the
same as in the random access model.

L 1T ) 243 63 S TGP LTA ) (2.9¢)
where
r=1]1-1/k,

Regression of the data in Figure 2.8 results in equation (2.10),
vhich shows that when the load L is greater than 33%, the coefficient c
is smaller than the coefficient b. Therefore, for a fixed load of 332
or higher, a system with higher multiprogramming level and smaller tran-

sactions has higher probability of desdlock than a system with lower

=

multiprogramming level and longer trsnsactions. This result is similar

P A

A

to the random access model.
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PD° = PDxFC = 2333°0513L (2.10) —
DZ N J

vhere Eij
MP x TZ Q%

173 "

To examine the relationship between the probability of deadlock and the

lockable unit size, we replace TZ by wIZ and DZ by kDZ in equation
(2.10), and obtain equation (2.11).

PD" = t x PD’ (2.11)

where

rz4+74Lx v3.88—(4.74Lw)/k
Al B L1 S 1 & e L O &3 )4 (2.112)

1f the database is well placed, then w is equal to k, and equation

(2.11a) becomes equation (2.11b). Similar to equation (2.4b), it shows

that when the load L is less than 342, which is realistic and within the

range of our simulations, t is greater than one. That means larger

lockable units reduce the probability of deadlock. This result is simi-

lar to the one found in the random access model.

1.55-4.61L

t=k (2.11b)

For the badly placed database, setting w to one in equation (2.1la)

results in equation (2.l1lc), which shows that, within the range of our

simulations, smaller lockable units reduce the probability of deadlock.

This result is also similar to the ome found in the random access model.

Tz4.74Lr
- <B8LT £ 2733=107 (2.11c)
t = G@-1)Z-8LE pZUTI3LT L 2333=TUIISLITE c

Regression on the data in Figure 2.9 results in equatiom (2.12).

- 2_ - 2
T = szz.aln-o.2)9-0.27 (2.12)

Replacing DZ by kDZ and TZ by kTZ, equation (2.12) becomes equation
(2.13a), which shows, as does equation (2.6a), that t is greater than




[
e one — longer waiting delay for a conflicting lock request.
!
\ 2
}~::. “ - k°l1+1 04(1--004) (2.1"‘.)
-. .q.'
N
iﬁf Replacing DZ by kDZ, but 1leaving TZ unchanged, equation (2.12)
™ becomes equation (2.13b), which shows, as does equation (2.6b), that
AN when the load is light and k is small, t is grester than one, There-
~N

ol fore, in general, reducing the size of lockable units increases the

<y
‘EF: waiting delay of a conflicting lock request, except when the load is
e heavy, the database is badly placed, and the reduction of lockable unit
N size is large.
N
R VT = (2.13c)
qu Dzl3.4rL(qL—0;4)
. ¢ (Hr_l)IIT7?Ifit=0727'§ZIETBEEfEI=UT887';I3TEI£7E-U.27530727
l;f-' h
“ where
e = (1 -1/k
sy
\
RS Regression on the data in Figure 2.10 results in equation (2.14).
o DV = -0.88 + WT (2.14)
N
i Dz = 512 DZ = 2048
%{} MP/TZ 7 10 12 16 MP/TZ 7 10 12 16
e 7 119 .150 .163 .176 7 .033 .045 .054 .067
'-:." 10 .166 019 0210 0221 10 '068 0“7 . o°95
St 12,192 .225 .237 .245 12,059 .080 110
et 16  .236 .268 .277 .284 16 .078 .105 .119 .137
= DZ = 1024 DZ = 4096
N MP/TZ 7 10 12 16 MP/TZ 7 10 12 16
Ca
N 7  .063 .085 .098 .116 7 .016 .024 .028 .036
'?:"- 10 . g o?gg ogs 151 10 0825 0035 c&? .8;3
&'-' 12 0110 .142 .155 0173 12 0030 .041 .oso 0“4
“ 16 .143 177 .191 «207 16 QMO 0057 0“7 o°83

. [l
e AN
A L

PC : Probability of a Lock Request conflicting
With Another Lock Request

Figure 2.6
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AN DZ = 512 DZ = 2048
S w/1z 7 10 12 16 W/TZ 7 10 12 16 TS
e 7 .057 .124 .168 .230 7 .01l .028 .044 .086 o)
7 10  .072 .149 .189 .242 10  .012 .032 .050 .104 S
e 12 .081 .161 .201 .246 12 .013 .035 060 .113 e
16 .102 .181 .214 .247 16 .015 046 .078 .14 @]
L DZ = 1024 DZ = 4096 ]
NG RN
;1{ MP/TZ 7 10 12 16 MP/TZ 7 10 12 16 ]
. S
o 7 .025 .057 .089 .156 7 .005 .012 .019 .037 -
' 1ot ime Ul o lhoe e
N 18 o83 .988 138 o2 16 .005 .016 .029 .067
o PD : Conditional Probability of a Lock Request
o Causing a Deadlock after Conflict
| f;::: Figure 2.7
R DZ = 512 DZ = 2048
N MP/TZ 7 10 12 16 MP/TZ 7 10 12 16
: 7 .0068 .0186 .0274 .0405 7 .00036 .00126 .00238 .00576
( 10 .0120 .0295 .0397 .0535 10 .00058 .00214 .00390 .00988
g 12 .0156 .0362 .0476 .0603 12  .00077 .00280 .00552 .01243
3 16 .0241 .0485 .0593 .0701 16 .00117 .00483 .00928 .01931
. DZ = 1024 DZ = 4096
ey MP/TZ 7 10 12 16 MP/TZ 7 10 12 16
- 7 .0016 .0048 .0087 .0181 7 .00008 .00028 .00053 .00133
10 .0026 .0092 .0158 .0273 10 .00015 .00045 .00086 .00243
12 .0035 .0122 .0195 .0337 12 .00015 .00058 .00I15 .00326
16 .0060 .0193 .0285 .0437 16 .00020 .00091 .00139% .00556
PCxPD : Absolute Probability of a Lock Request -
o Causing a Deadlock after Conflict
Figure 2.8 P ‘
o trfq
< )
" )
Qo 0
'-._: .’:::1
e :j
g 2@
e _‘L ‘
I ]
or .-
-.:T'. T




2 8B 2 & 4
-] g m o o
‘ Pt a L o
. 8 =~ o 3 w
\
. o W 4 o g
» o ﬁ TR - R
_. -
““5“ - ““U“ -l (O 00 [Ve1" g gl ] - & @
, V-3 e o 0 -t e o 0 0 OOy NWNNO 1] -] -1 3
: -t | NSO [N 1 =2 V-1 e o o [v.3 e o o o - O O T &
o ot vt el -t -t | O~ - | WOOT Wi a 8 g ¢ @
. ot omed = —te—t O ™ -
A o~ u””” o~ n%”” =y NN~ o m m - o
' >y 6 08 O 4 oo o 0 N | oS N OO~ D A O O @ o
5 @ OOt N P -1 u O [t | ¢ 0060 Ojrt] o o0 m & W N A
K - O ol -1 -3 el s LS B I T T
S _lgose ¥ _tomen & 3 = 8 s SN
. -O~ MNO~ U o~
. el -
£ s 1S8R iginess A, 1 o] RN 1 }ol3R88 ¥ g © o o
o SN0 N PN WY -] ®s e e —] s e 0 e . n Y g A o
A [ /A ol N [l Cal -2 TN o a 9 U w g
", (-] ml (=1 a K] & Qo -
‘ NOWnO NN O L] Qe O «
', ™~ | NNO -y ~ | Ot ~SOVWO —eain0 @ @ @ .
2 I R am ™~ | =N ~ | VO T g e~ . m a8 0
" L T Ao o IS s e g O R RS “ N
g (g 3 NN NN g o W M o
. N N ow v & o o o O ~ W O @
_... ! 2y QO g (=} .m N a8 nmb... fu iy m u (] m ]
v S Pl Rt Pod Rt A m 0 Bl ~ono JjNONO OoF @ o o -1 prt
L 1 = ] A w M —_——— B = ] 9 X a U B
"\ -0 m Sed o -] o
' & @ o W - O « @ 3
b, su R [ IV Sr, .n .M“ v
0 L]
£ Ty N A A NI mm = m ~ 3% *”32
: —~RONN ANON LW o .
‘ O | O™ O | DO A @ IO ~NOMNO w g @9 O e~ o o
. vt e o 0 0 -t e 000 WO O e o o o [v-] e o o o ab QA - @ o M
N PO OMmno X 3 - | QNN - ot~ Ad 1 [} o o
vl ) yf onf o vl v g eﬂ. d e f =4 vt o r=d .d.u W < w M. ..u M
4 DO ~n bt OV O-T —TNN MU e # " o
L N | TORN NlA~SA © N | TN N PPN ®ed o A 3 ©
—y e e o0 -y s e 0 0 ot -y o & & o -y ® o 0 0 gjesl @ o a
™~ ROy F NOA=g U DO 3 VRO dw <= < ¢ o«
1 e ——— o ——t V..Ou ~ —e— o - &g CE
' e POVL - —tF =N < .nla FONN - NVOOVR o by~ m o 0 a m
3 1O | OO~O O | ISR oo Q| ANMON O | N V] Y] QO m
-y oo o0 || Jo~ o o 00 [ ] e o o ¢ N §o~ o o 0 0 .. &~ ¥ & 8 Ao
4 [ ] VOO~ el - -1 [Tal--1-, 1] 0RO o @ e W
[~] 4t N -4 “ ) -t N - m - 8 0 [ ]
' a a A > B S 52 o
b o =4 e lals) 89%8 Onhemin A ~ - w m 2 W
- 172 ~ | A~ ™~ | FOON ™~ | O~ ) R e " O
' ~ * 0o 0 0 e o o o ® o 0 0 I - m ® ®© © L]
L O ® Lol 42" O NN ﬂ 5 ® m ”. ® =] “
w. N N ~N ~N [ ] = 8 e o a
. - | ] =t [ ad [ ] -~ e
é ~ | ~NO~V ~NI~NONO ~ | ~Oocho ~|~Ocv m r v m
. m vty m e m ot o m e " d % o u b
¥. o~ O M o @ u
‘I
—\.
Y.
V.
£
W et . - AN ., PR ;0 e L B o
a g N ... ............ .... ; .“ ..-\.4.. o . on\-.ﬂq.-\w\f...‘.h X -.~.)v\.4\ : 4 P A .r. ................. ‘. .t-.. AR
P4 DERCIEAAY . P L -~ i} [} B SN 4 . ”
;Wll.l\f-!’% At P} e WP £ LY - T




AL A R S i Ve b ol R B S N S e T T T R R N S e i TR S L P P O
............... YRS Lt Tt te AR . R e e

L

restart variables into system throughput, a measure of performance which
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Et;{ We found the performance behavior of a DBMS with random database

{: access distribution quite similsr to that of the 20/80 access distribu-

i;i; tion — the 20/80 system behaves as a random access system in heavy

ijﬁj load. In fact, the same regression models (equations) with different

it;] coefficient values fit both-access models well except for the standard
3 deviation of the lock request waiting delay.

Ej The probability of conflict of a lock request increases more than

;;_ﬁ linearly with the multiprogramming level and the transaction size; the

- increase is larger with the multiprogramming level than with the tran-

\{:\ saction. The probability of deadlock, the average waiting, and its

.ﬁz; standard deviation of a conflicting lock request also increase more than

:fj{ linearly with the multiprogramming level and the transaction size. But

f;fﬁ the increase is smaller with the multiprogramming level than with the

;2is transaction size,

i;%; The waiting delay of a conflicting lock request can be approximated

%ﬁ%: by an Erlangian distribution in the random access model. This result

(‘ ] can be extremely useful for researchers who use queueing theory to model

o a DBMS.

VN

‘ff: The results of this study have been validated, and can be extrapo-

';i lated for database size of up to 12384, multiprogramming level of up to

::}a 128, and transaction size of up to 32.

i;ﬂ; So far we have concentrated on the basic factors of PC, PD, WT, and

:“;i DV. We will next briefly discuss the combination of these blocking and

is more directly useful to a system designer.

In the highly functional model used here, all system resources are
f{;‘ represented by the time to process lock requests. Since each request -
. consumes the same time, we measure throughput by number of lock requests ‘1

processed by transactions which finish.

In every case, throughput decreases with increasing TZ, if MP and

!g'; DZ are held constant. As noted above, for longer transactions there are ;.
;ﬁ;j more conflicts, more deadlocks, and longer delays. The message for Ti
;::; applications program design is clear. Transactions should be made as j;TB
e o

small as possible.
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Also, throughput increases with increasing DZ if MP and TZ are held
constant. This is the "badly placed locks" case, and it also can be
snticipated from the analysis above. For random access of dJ-~ta, small
granules will provide better throughput when both blocking and restart
behavior are considered. However, because of the increasing communica-
tions and processing costs of lock management, the response time will
increase. The optimal granularity csn be calculated from the regression

equations.

Finally, throughput first increases, and then decreases. wvith
increased MP if TZ and DZ are constant. Given a particular granularity
and transaction size, for light loads, significant gains in throughput
can be attained by increasing the multiprogramming level. However, as
the system load becomes heavier, the losses to deadlock and restart more

than outweigh the gains from increased concurrency.
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3. Communication Delay and Two Phsse Locking

Abstract

A lock request in a distributed DBMS incurs many kinds of dellI. We
group these delays into two classes, The first onme, called blockin

elay, results from one lock request waiting for another lock reques
because of lock conflict. It is a direct result of concurrency control.
The second delay, called communication delay, cousists of communication
network delal, 10 delay, and CPU Btoceoazng delazs In this paper, for
two phase loc 1n§ in a distributed DBMS, wve study how the communication
delay affects the _bloqkznﬁ delaz‘nnd.n stem performance. The results
show that the communication delay has little effect on_ the_ probabil t{
of conflict and deadlock of lock requests. The results also show tha
the blocking delay has a 2-stage erlagian distribution and that the
number of locks held by a transactién vhen the transaction deadlocks and
aborts has a 2-order negative binomial distribution. The results are
1ggortant to performance modeling of distributed two phase locking algo-
rithms, because they simplify the models.
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3.1 Introduction

Many distributed concurrency control algorithms have been proposed
(Bad[1), Berl(l], El1[1], oGar(l]), Linl4], Ros[1], Stell), S8toll],
Tholll). But how well do they perform? A few researchers have
attempted to compare the performance of different algorithms (Gar(l],
Lin[1), Lin[2], Riell)], Thalll). Unfortunately they all used different
assumptions about system and application parameters. Furthermore, they
compared different algorithms using different performance measures. For
example, in Lin[1], two timestamping algoritbms are compared, and the
performance measure used is the average response time.

In Rielll, two two-phase locking algorithms -- the centralized
method and the primary copy method — are compared. Performance meas-
ures include utilization of devices, average transaction respomse time,
and others. In addition, a transaction must obtain all its locks before
it can start, no duplicate data is allowed, and multiprogramming level

is assumed to have no effect on system performance.

In Gar[l], three two-phase locking algorithms are compared — the
centralized method, the voting method, and the ring method. Both utili~
zation of devices and average responsé time are performance measures., A
few major assumptions are made: multiprogramming level is one at each
node, a transaction must obtain all locks before it proceeds, and a
transaction requests all update locks in parallel. In addition, the

main results apply to a fully replicated system.

In Lin[2], distributed two-phase locking algorithms are abstracted
and encapsulated in one model, and the relation between system blocking
behavior (conflict and deadlock) and various system and application
parameters is studied in detail. Two access distributions of the data-

base are simulated. The first one has a uniform distribution -- every
data granule is equally likely to be accessed by a lock request; the
second one has 80X of the database accessed by 202 of the lock requests.
It concludes that the more concentrated database access distribution has
the same effect on system blocking behavior as the uniform distribution

in heavier load.

-----



In Thafl), two two-phase locking algorithms are simulated — basic

tvo-phase and centralized two-phase. The performance measur: used is
the average transaction response time. The simulation wadel includes
many system and application parameters, thus necessitacing a large
number of simulation runs. But only the results of a few simulation
runs with limited values of theu.e parameters are presented.

These performance studies are very difficult to compare, and it is
almost impossible to integrate their results. They compare different
algorithms, they make different assumptions about system and application
environments, and they employ different measures for system performance.
This paper is part of a major effort to compare the principal distinct
concurrency control algorithms, using the same performance measures and
the same assumptions that are consistent with various system and appli-

cation environments.

This paper reports part of the results of simulation on two-phase
lockiqg. Section 3.2 describes the simulation model, Section 3.3

discusses the simulation results, and Section 3.4 concludes the study.

3.2 The Simulation Model

Two phase locking causes blocking and deadlocks among transactions.
Blocking occurs because two or more transactions may request the same
data item at the same time. Blocking degradates system performance
because a blocked lock request must wait for the blocking transaction to
complete or abort. This waiting is called blocking delay. Deadlock
occurs when two or more transactions directly or indirectly block each
other. Deadlock also degradates system performance, becuase a deadlock

causes a partially completed transaction to abort and restart.

Transaction blocking and restarting are affected by many system and
application characteristics. These include average transaction size
(oumber of locks requested by a transaction), multiprogramming level
(oumber of transactions running concurrently), database siz: (number of
locking granules), access distribution of the database (probability of
each data granule being accessed by & lock request), frequency of local
and remote requests, locking granularity, communication network, IO
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i;ﬂ} devices, memory size, CPU speed, and others. Thus to accurately evalu-
(;.. ate the restarting and blocking behavior of the two phase locking, we
" must include all these factors in the simulation model, and this is too
%ifi expensive to do directly.

;?:' To simplify the simulation, we model the system and transactions in
.?_ a highly functional wodel. Much of the detail of a real distributed
:;jii system is captured in a few parameters, which are used as inputs to the
iﬁg simulation model. This approach permits us to greatly reduce the number
S of simulation runs necessary, and also to reduce the complexity of the
\Lni model, wvhile retaining most of the impact that these details have on the
:%:k performance of the concurrency control algorithms.

N

:k:& We model a transaction as a sequence of lock requests. Between two
.f::' consecutive lock requests, & transaction incurs two kinds of delays:
flf: blocking delay and communication delay. The communication delay
iﬁi:- includes communication network delay, 10 delay, and CPU processing
E?f.. delay; it is called communication delay because in a distributed system
(}' it is 1likely that the communication network delay dominates the 10 and
;f; the CPU delays. The communication delay is an input parameter to our
'ECQ simulation model, while the blocking delay is an output parameter.,
E;; Thus, the blocking delay is measured as a function of the communication

e delay.

For each simulation run, we assume the communication delay to have

- o certain probability distribution, but we vary the probability distribu-
tion for different simulation runs., We use only hypo~exponential and

hyper-exponential distributions; therefore each distribution can be

&Q} characterized by its average and standard deviation. ;ﬁi
ﬁfi Since the communication delay, consisting of communication network S
‘7;: delay, 10 delay, and CPU delay, is an input parameter and is modeled by ggi
{*:f- an abstract probability distribution function, we wmake no assumptions Jf&
LS P .
e about the characteristics of the underlying communication network, IO ;li
. devices, and CPUs, and their relative performances. In fact, communica- :f%
P tion networks, 10 devices, and CPUs of various performance characteris- «of
(X 9!
e tics are modeled by different probability distribution functions. For ;gi
.;iii example, a high bandwidth and lightly loaded system has small variation ]
ZE:&; in communication delay, thus it can be modeled by a distribution .
Tw' e =
- - |
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N function with small standard deviation, while & low bandwidth and _..5
.( heavily loaded system can be modeled by a distribution function with .'-‘..j‘
:E:::E.' large standard deviation. Notice that the average communication delay o ]
"\; is used as the simulation time unit; therefore the average communication 1
=t delay is not a factor in the simulation model. Thus the simulation :
\_. results, especially the blocking delay, must be scaled according to the ".
:::_ actual average communication delay. y
-:.., Besides comnunication delay, input parsmeters of the simulation
o model include average transaction size, multiprogramming level, database 5
.::;.:Z size, and ratio of read-only transactions to update-only transactions " .
.” entering the system. Besides blocking delay, performance measures (out- I
" put parameters) include the probability of conflict of lock requests,
See the probability of deadlock and restart of lock requests, and the number i:-
f‘ of locks held by a transaction when the transaction deadlocks and res-~
" tarts. ) N
- We did not explicitly include the frequency of 1local and remote ;~
t data requests as an input parameter because it is captured by the proba- m'
_'_.:_'f_: bilistic distribution of the communication delay. For example, a system ':
x vith mostly local data requests can be modelled by s distribution func- :_'Z:_
“:f'; tion with small mean value. Neither did we include locking granularity F
s as an input parameter because locking granularity is a function of the ‘-:
';-: database size and the transaction size; increasing the granularity is '.:‘:El_.
’: equivalent to decreasing the datsbase size and the transaction size.
< Moreover, we simulated only random access to the database —— every lock- ﬁ:
, ing granule has the same probability of being accessed by a lock request T
'\-" — because our previous study (Lin[2]) showed that more concentrated
's'j access distributions had the same results as the random access distribu- iy
.;:_'::; tion in heavier load. The input parameters of the simulation model are —
discussed further in the remainder of the section. ?".
’ For a database size (DZ) of N, N locks and N queues for the locks
I are simulated. Deadlock can occur, and the transaction in the deadlock t
.,1 cycle that holds the least number of locks aborts and restarts immedi- :‘
:.';:'.' ately. -The reason we choose this particular transaction to abort is o
é‘: that our previous study (Lin(3]) concludes that this deadlock resolution .

slgorithm performs best in all system and application enviromments.
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o Transaction size (TZ) is assumed to be exponentially distributed. S
{: The average of the distribution varies among different simulation runs, . .‘
-:7:::: but remains fixed within a simulation run. A transaction requests locks '5-,
;I:::.': sequentially, but different transactions request locks asynchromously. *‘:
\‘ This model is general enough to include all transaction types of i:::j:
¥ interest. For example, to model transactions in which read requests and ?jf'.‘._
update requests respectively are issued in parallel only once, the tran-
‘_ saction size can be set to two. Z:}Z;:;
o After a lock request is granted, a transaction waits for a period a
-_ . of time before requesting another lock. The period of time is the com—- P
: munication delay discussed previously. The average of the communication '
'.;_'.::;f delay is fixed at one for all simulation runs, but the standard devia- ,::-'_'._4
'-:': tion varies among different simulation runs. The simulation results can 7
. easily be scaled to whatever the actual average of the communication E‘;
3 delay may be. ','::;j
- For a simulation run, the multiprogramming level (MP) is fixed; : ‘j:;
( thus the model is closed, and a new transaction is generated and started ;,..i
only after one completes. The results of the simulation are presented f
,_,“ in the next section.
e e
! -~
:l'_:jl: 3.3 Simulation Results
We simulated three different distributions of communication delay.
All are erlangian and have the same average delay of one time unit; one
. has a standard deviation of 0.368, the second 1.87, and the third 5.28. %.'
'Z:}:;: For each standard deviation of communication delay, we simulated three ,.‘_'
\ different multiprogramming levels, three average transaction sizes, and :
three database sizes, for a total of 81 system configurations. Figures ;.
:._.: 3.1 through 3.8 show the results. B
:',".::: From the results we can conclude that the standard deviation of o
JE communication delay has no effect on the probability of conflict and the :‘;:E:f
.;“ probability of deadlock of a lock request, or on the mnumber of locks :;__O
::;;-:: held when a transaction deadlocks. But it does have an effect on the
" aversge waiting time of blocked lock requests (blocking delay) = the g
.r. larger the standard deviation, the longer the average waiting. We .
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if: discuss the detsils of these observations in the rest of the sectionm.
Each point of Figure 3.1 represents the probsbilities of conflict

(PC) of two system configurations with same multiprog: .m.ing level,

average transaction size, and database size, but with different standard

deviation of communication delay (DEV). One has a standard deviation of
{EZ 0.368, and the other of 5.28. The X-coordinate of the point represents
‘33 the probability of conflict of the former configuration, while the Y-
'?E coordinate represents the probability of conflict of the latter confi-

guration. From the figure, we can see that all points lie very close to o
o the disgonal line — implying that two system configurations with widely i?{i
N different standard deviations of communication delay have the same pro- ﬁ?ff
:i bability of conflict. Thus we can .conclude that the standard deviation ;“;j
t: of communication delay has no effect on the probability of a lock ::;t
o request conflicting with another lock request. The reason is that the -
:& probability of conflict of a lock request depends only on the total :ii_
Sﬂ: number of locks outstanding in the system, which our simulation results ::ﬁf
i.“ shov to be indep:?dent of Fhe lta?dard dfviatiog of communication delay. §;~-
v .
;3 }if'
o
e g ! : =
NS : o
. ! . IR
3 ;. - - g%ﬂ
= j - '
;f 0.0 o ' ' ' ‘
0.0 PasaaaiLity o Comiicy: BV =528 0.4
L Figure 3.1 PC (DEV=5.28) Vs PC (DEV=.368)
o

. Similar to Figure 3.1, Figure 3.2 represents the probability of

deadlock and abortion of a lock request for the two different standard

deviations of communication delay. From the figure, we can also con-
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Figure 3.2 PD (DEV=5,28) Vs PD (DEV=,368)

clude that the standard deviation of communication delay has no effect

on the probability of deadlock and abortion of a lock request.

The reason is that the probability of deadlock of a lock request
depends on the total number of locks outstanding in the system, and on
how these locks are distributed among transactions. Our simulation
results show that these two factors are independent of the standard

deviation of communication delay.

Figures 3.3a through 3.3c plot, for average transaction size of 4,
16, and 32 respectively, the average waiting delay of blocked lock
requests against the standard deviation of communication delay for vari-
ous system configurations. They show that the average waiting delay
increases linearly with the standard deviation of communication delay
wvhen the average transaction size (TZ) and the multiprogramming level
(MP) are small. Otherwise the increase is less than linear with commun-
ication delay variation. In fact, when the average transaction is
larger than 32, the variation has little effect on the waiting delay.
This can be explained by the following example. If all the transactions
in the system are small, and the standard deviation of communication
delay 1is large, then the time required by each tramsaction to complete

varies greatly, say from 10 time units to 35 time units, with an average

e e to e
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58 Figure 3.3a Average Blocking Delay when TZ=4
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o of 15 time units. Since blocked requests tend to wait for transactioms
:j".:’ that bave been in the system longer, these blocking transactions tend to
".f-j take from 15 to 35 time units to complete, with an average of 25 time

::_:- units. But if the standard deviation of communication delay is small,
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then the time required by a transaction to complete varies less, say
from 10 to 20 time units (with the same average of 15 time units). But

the blocked requests most likely wait for transactions that require from
.0- ¢ " L] [}

7

AVENGE WAIT OF BLOCIED WPRATE MEBNESY

—d 33, B100)
/ kX3, 4008)
- / 36, 12308),
16, D)
)
", 1)
20.0¢ # ] 1 {
[ ¥ ] STARAD MVIATME & COWNICATID BELAY 8.0

Figure 3.3c Average Blocking Delay when TZ=32

15 to 20 time units to complete, with an average of 17 time units, which
is much smaller than the 25 time units of the previous case. Therefore
the blocked requests in a configuration with larger standard deviation
of communication delay tend to wait longer if the average transaction

size is small.

If all tr.nsactions are large, then the time required by a transac-
tion to complete varies little with the standard deviation of communica-
tion delay. The communication delay between two consecutive lock
requests by the same transaction may vary widely if the standard devia-
tion of communication delay is large, but since each transaction
requests many locks, these variations eventually average out within each
transaction. Therefore the average waiting delay of blocked requests is
relatively invariant with the standard deviation of communication delay

if the average transaction size is large.

In Figure 3.4, the X-coordinate and the Y-coordinate of each point
represent respectively the average wait and the standard deviation of

the wait of blocked lock requests of a system configuration. These 58
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points represent the 81 runs with some runs overlapping on the same
points. The figure shows that the standard deviation of the waiting
delays of blocked requests is a fixed ratio of the averagez waiting delay

regardless of multiprogramming level, average transaction 3.. , database

size, and communication delay variation. This observation implies that
the waiting delay of blocked lock requests may have 3 fixed distribution
function regardless of the system configurations; but the average of the
distribution function is dependent on the system configurations as Fig-
ure 3.3a through 3.3c show. We plotted the distribution functions for
some of the configurations, and all of them 1look similar to the one
shown in Figure 3.3; vhich closely approximates 2-stage hypoexponential
(Erlangian) distribution function. In fact, the fixed ratio of Figure
3.4 (the slope of the line) approximates the standard deviation of a 2-

stage hypoexponential distribution,
0.0

1
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Figure 3.4 Average Vs Standard Deviation
of Blocking Delay
For each system configuration, we compute the average number of
locke held by transactions when they deadlock and abort, denoted by
LOCKS_AT_DEADLOCK. Each point of Figure 3.6 represents the averag.
LOCKS_AI:DEADLOCKs of two system configurations with same multiprogram-
ming level, average transaction size, and database size, but with dif~-
ferent standard deviation of communication delay; one has standard
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deviation of 0.574, the other of 5.28. The X-coordinate represents the
average "LOCKS_AT_DEADLOCK of the former configuration, while the Y-

coordinate represents the latter configuration. From the figure, we can

see that all points lie very close to the diagonal line, implying that
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Figure 3.7 Average Vs Standard Deviation of
LOCKS_AT_DEADLOCK
two configurations with widely different standard deviations of communi-
cation delay have the same LOCKS_AT DEADLOCK. Thus we can conclude that
the communication delay variation has no effect on the number of locks

held by a transaction when the transaction deadlocks and aborts.

For each system configuration, the standard deviation of the number
of locks held by transactions when they deadlock and abort, represented
by DEV_LOCKS_AT DEADLOCK is plotted against the LOCKS_AT DEADLOCK in
Figure 3.7. This plot approximates a straight line, indicating that
DEV_LOCKS_AT_DEADLOCK may be a fixed ratio of LOCKS_AT DEADLOCK.
Regression analysis indicates the ratio is about 0.70, implying that the
f% number of locks held at deadlock may have a 2-order negative binomial
~ distribution. This distribution is obtained by throwing a biased coin

repeatedly until we obtain the second success. The number of throws

« .

represents the number of locks held by a transaction when the transac-
tion deadlocks and aborts. The mean of the distribution function
depends on the bias of the coin, and the bias of the coin depends on the
@ multiprogramming level, the average transaction size, and the database
?&: size. We plotted the distribution functions of a few system configura-
tions and found all of them looking like the one shown in Figure 3.8,
vhich closely approximates a 2-order negative binomial distribution.




A

. 1' e ) .
) .

o PR
»
A T TR b
[ M

NS
'y

O
v Yy
R
.
»
«’e

Y .‘ F N
et
AT

O
NN
AT
L NN

.A .
] A'l,.
Ae .'.A' o

‘y

A
oy

» .l ..
. 8 -

‘l * ¢

Lol )

".- '_-. '/_

L

.

o'y
-

PuoassiLiTy o0 Brasoce A Assavien
-

0.0 ) . or s .u ar m; & Asonion 7SL
Figure 3.8 Distribution of LOCKS_AT_DEADLOCK

3.4 Conclusion

In summary, we can conclude that communication delay variation has
no effect on the chance of a lock request conflicting or deadlocking
with another lock request. It also has no effect on the number of locks
held by a transaction when the transaction deadlocks and aborts. 1In
fact, the distribution function of the number of locks held by a tran-
saction when it deadlocks and aborts has a 2-order negative binomial
distribution with its average and standard deviation independent of the
communication delaylvariation.

The blocking delay of a blocked lock request has a 2-stage Erlan-
gian distribution regardless of the standard deviation of communication
delay. The mean of the distribution is also independent of the standard
deviation of communication delay, if the average transaction size is
large. However, if the average transaction size is small, the mean of
the distribution function depends on the standard deviation of communi-
cation delay -- the larger the variation, the longer the average block-
ing delay. But in many cases, conflict occurs rarely. Therefore its

effect off system performance is insignificant.
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These results are important to performance modeling of distributed
concurrency control, because they eliminate the standsrd deviation of
communication delay as one of the system parameters that affect system
performance. For an analytical model, this means that the communication
delay can be assumed to have an exponential distribution which simpli-
fies the model., For a simulation model, this means geometric reduction
of the number of simulation rumns,
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4. Read Only Transactions and Two Phase Locking

Abstract

Intuition tells us that i distributed DBMS using two phase locking,
the ratio (denoted by R?Wg of read-only to update transactions affects
system performance --"the higher the ratio, the_ better the perfor-
mance. Read—onli.tranaactxons only request share locks, and thus should
cause fewver conflicts and deadlocks among all transactions. Therefore
both read-only and update transactions are expected to perform better if
RZV is higher. This paper reports the results of a stu K contradicti
this intultion, and discusses the relationship between the R?

. : W ratio an
system performance in detail.
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4.1 Introduction

Many distributed concurrency control algorithms have beex proposed
S (Bad[1]), Ber[l], El1[1], Garll], Lin[4], Rosl[1l], S8te!l1', 8toll],
N Tho{l]). But how well do they perform? A few researchers have
attempted to compare the performance of different algorithms (Gar(1l],
Sﬂf Lin[1]), Lin[2}, Mun(1], Riell], Tha(l]). Unfortunately they all used

different assumptions about system and application parameters. Further-

- more, they compared different algorithms using different performance
messures. For example, in Lin[l], two timestamping algorithms are com—
ES; pared, and the performance measure used is the average response time.
7.
E:E In Rie[l], two two-phase locking algorithms -- the centralized
> method and the primary copy method — are compared. Performance meas-
o ures include utilization of devices, average transaction response time,
:E}: and others. In addition, a transaction must obtain all its locks before
ﬁ%: it can start, no duplicate data is allowed, and wmultiprogramming level
% is assumed to have no effect on system performance.
jji In Gar[l], three two-phase locking algorithms are compared — the
ﬂi centralized method, the voting method, and the ring method. Both utili-
::'. zation of devices and average response time are performance measures. A
few assumptions are made: all transactions are update transactions; mul-
fﬁ tiprogramming level is one at each node; a transaction must obtain all
éﬁ? locks before it proceeds; a transaction requests all locks in parallel;
-:i and the database is fully duplicated in every site (performance of par-
o titioned database is treated briefly).
fﬁj In Lin[2], distributed two-phase locking algorithms are abstracted
?ff into one model, and the relation between system blocking behavior (con-
- flict and deadlock) and various system and application parameters is
;;: studied. Two access distributions of the database are simulated. The
.iﬂi first one has a uniform distribution: every data granule is equally
::i likely to accessed by a lock request; the second ome has 20X of the
;; database accessed by 802 of the lock requests. It concludes that the
. more concentrated database access distribution has the same effect on

system bfocking behavior as the uniform distribution in heavier load.
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In Tha[l), two two-phase locking algorithms are simulated — basic
tvo-phase and centralized two-phase, The performance measure used is
the average transaction response time. The simulation model includes
many system and application parameters, but results of only a few simu-

lation runs with limited values of these parameters are presented.

These performance studies are very difficult to compare, and it is
almost impossible to integrate their results. They compare different
algorithms, and they use different assumptions about system and applica-
tion environments and different measures for system performance.
Therefore we began a major project in order to compare the principal
distinct distributed concurrency control and reliability algorithms,
using the same model, same assumptions, same performance (output) param-
eters, and the same system and application (input) parameters. This
paper reports part of the findings of this project. In particular, this
paper reports our findings about the relationship between read-only
transactions and the performance of two phase locking. We found that,
wvhen the ratio of read-only transactions to update transactions
increases from 1/3 to 3/1, the response times of both read-only and
update transactions and total system through-put remain unchanged,
except when the system load is extremely heavy and transactions are

long.

This paper is organized as follows. Section 4.2 describes the
simulation model, Section 4.3 discusses the simulation results, and Sec-

tion 4.4 concludes the study.

4.2 The Simulation Model

Because this paper reports part of the findings of & larger pro-
ject, we describe the simulation model of the larger project first. We
model a transaction a8 a sequence of lock requests., A lock request
incurs two kind of delays. The first, called blocking delay, occurs
because of lock conflict (two requests ask for the same lock). The
second delay, called communication delay, consists of communication net-

vork delay, IO delay, CPU processing delay, and others.
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Blocking delay and communication delay are affected by many fac-
tors, in additional to the R/W ratio. These include average transaction
size (number of locks requested by a transaction), multiprogramming
level (number of transactions running concurrently), database size
(number of data granules), access distribution of the database (proba-
bility of each locking granule being accessed by a lock request), com—
munication network, 10 devices, memory size, CPU speed, and others
(locking granularity is not explicitly considered because it is a func-
tion of the transaction size and the database size). Thus to accurately

evaluate these two delays, we must include all these factors in the

simulation model, and this is too expensive to do directly.

To simplify the simulation, we divided the simulation into two }é;4
steps. During the first step, we considered the communication delay as .
one of the input parameters, and the blocking delay as one of the output b
parameters (performance measures); thus the blocking delay is measured jﬂtﬁ
as a function of the communication delay. For each simulation run, we t;fd
assumed the communication delay to have certain probability distribu- ;;!q
tion, but we varied the probability distribution for different simula-~ o
tion rums. We used only hypo-expomential and hyper-exponential distri-
butions; therefore each distribution can be characterized by its average
and standard deviation.
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Since the communication delay, consisting of communication network

delay, IO delay, and CPU delay, is an input parameter and is modeled by

L b

an abstract probability distribution function, we made no assumptions -
about the characteristics of the underlying communication network, IO ~@
devices, and CPU, and their relative performances. In fact, comwmunica-
tion networks and I0 devices with different performance characteristics
are modeled by different distribution functions. For example, a distri-
bution function with small standard deviation simulates a high bandwidth }fg
or a lightly loaded system, while a distribution function with large :

standard deviation simulates a low bandwidth or a heavily loaded system.
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Besides communication delay, system and application parameters
(input parameters) include average transaction size, multiprogramming
level, database size, ratio of read-only transactions to update-only

transactions, and access distribution to the database. Besides blocking
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delay, performance measures (output parameters) include probability of ]
'.';, conflict and deadlock among lock requests, average response times of .1

read-only and update lock requests, and system through-put.

;;; During the second step of the simulation, the performance measures
\ obtained during the first step will be used to avoid simulating the ff?j
management of locks and timestamps. For example, when a two-phase lock-
ing algorithm is simulated in the second step, the probability functions
of conflict and deadlock obtained during the first step will be used in
conjunction with a random number generator to decide whether a lock ;§;4
request must conflict and deadlock. No 1locks and queues of lock

240 requests will be simulated explicitly. The second step simulation is e
. being continued and will be presented in a future report. The first :

e step simulation model is described in the rest of this sectionm. -

n For a database size (DZ) of N, N locks and N queues for the locks
o are simulated. Deadlock can occur, and the transaction in the deadlock
> cycle that holds the least number of locks aborts and restarts immedi-
( ately. The reason we choose this particular transaction to abort is
that our previous study (Lin[3])) concludes that this deadlock resolution

algorithm performs best in all system and application emvironments we

S
Ll

have simulated.

Transaction size (TZ) is assumed to be expomentially distributed.
The average of the distribution varies among different simulation runms,
but remains fixed within a simulation run. A transaction requests locks

e sequentially, but different transactions request locks asynchronously.

A transaction model in which read locks and write locks respectively are
requested in parallel is thus equivalent to our transaction model with

transaction size equal to two.

After being granted a lock request, a tramnsaction waits for a R}

0, N

period of time before requesting another lock. The period of time is the
communication delay discussed previously. The average of the communica~-
) tion delay is fixed at one for all simulation runs, but the standard ?
- deviation varies among different simulation runs. The simulation . |
e results can easily be scaled to whatever the actual average of the com- ;

%:i munication delay may be.
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The multiprogramming level (MP) is fixed within a simulatios rum,

but varies among different simulation runs; thus the model is closed: a _
) new transaction is generated and started only after one complctes, t':.f';'.'-f
: The access distribution to the database is random: every lockable :;fﬁ
unit has the same probability of being accessed by a lock request. We .]
o use this uniform distribution because our previous study (Lin(2]) shows i
':ﬁ- that more concentrated distributions have the same results as the uni- ‘;3
s form distribution in heavier load. iii
C Part of the findings concerning the relationship between the R/W fad
- ratio and system performance of the first step simulation is presented f;
in the next section. j 
* o
gid
.gi 4.3 Simulation Results ;332;
- We ran the simulation program many times with different values of _?E;i
{ . multiprogramming level, average transaction size, database size, stan- fij.i
- dard deviation of communication delay, and R/W ratio. The table below ;ij
Eﬁ‘ shows the input parameters and their values used in the simulation,  ;:
o R
- |Input Psrameter | Values Used | "*’:.i
o Itransaction size (TZ) | 4,16,32 I gi]
\ lmultiprogramming level (MP)| 16,32,64 l ‘
:&j |database size (DZ) | 4096,8192 | '7;§
e IR/W ratio | 1/3,1/1,3/1 | :{7!§
" standard deviation of 0.573, 0.75,1.87,5.28 TN
T communication AR,
.;l Figure 4.0 i;?aj
®
f;; We present only the results of the standard deviation of communication T
;i delay of 0.75, because we found that the relationship between the R/W ,iﬁi;:
:fﬂ ratio and the performance of the two phase locking does not change with A
}! different standard deviation of communication delay (Lin[3]). Tables 1 i;;,%
G: thtough-9 show the results, which are also rearranged and plotted in 't%i:
ﬁ Figures 4.1 through 4.7. ';}tf
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In Figure 4.1 each point represents the probabilities of conflict

of update lock requests for two system configurations with same MP, TZ,
DZ, and DV, but with different R/W. Different points of the figure
represent different configurations with different MP, TZ, DZ, or DV.
The X-coordinate represents the probability of conflict for the system
with R/W equal to 1/3, and the Y-coordinate the system with R/W equal
to 3/1. The points in the figure lie close to the diagomal line,
implying that the probabilities of conflict of update requests are the
same for each two configurations with different R/W ratio. The R/W
ratio has no effect on the probability of conflict of update lock

requests.

Figure 4.2 plots a similar graph for the probability of deadlock
of update lock requests, and the points also lie close to the diagonal
line. Thus the R/W ratio also has little effect on the probability of

deadlock of update lock requests,

These two observations contradict the intuition that higher R/W
ratio reduces conflict and deadlock for update transactions because of
more share locks and less exclusive locks in the system. To gain more
insight about this unexpected result, during each simulation run we
examined the locks outstanding in the system. We found that even
though the ratio of share locks to exclusive locks did increase with
higher R/W ratio, on the average the total number of locks outstanding
in the system at any time varies little with the R/W ratio. And the
total number of locks outstanding in the system determines the proba-
bility of conflict and the probability of deadlock of update requests,
because update requests conflict and deadlock with both read and update

lock requests.

Figure 4.3 plots a similar graph for the average blocking delay of
blocked update lock requests. The figure shows that the R/W ratio does
have an effect, though only a small one, on the blocking delay of
blocked update lock -equests. Specifically, the average waiting
decreases a little when the R/W increases from 1/3 to 3/1. Our results
(Table _8) show that with a higher R/W, read-only tramnsactions complete

slightly faster; thus update transactions wait slightly shorter for

blocking read-only transactions.
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We have examined the effect of R/W ratio on the probability of

conflict and deadlock of update lock requests. Here, we examine how

2

that effect translates into system performance in terms of response f;fﬁ
time. Table 4 shows the average response time of completed update lock ﬁ;;éi
requests. The average response time includes time wasted due to tran- f{“?f
saction abortion. Notice that if there is no blocking delay and tran- .{1
saction abortion, then the average response time of wupdate lock - ,J
requests must be one. The table shows that the only acceptable {,gﬁa
response times occur when the average transaction size is four or the ;;;:l
load 1is less than 1Z. The load is defined as the product of multipro- ;?’q
gramming level and the average transaction size divided by the database iili
size. The table shows that within the acceptable range of transaction %if:
size and system load, the average response time of update lock requests Eé%iﬁ
varies little with the R/W ratio. This is expected because of the A
invariance of the probability of conflict, probability of deadlock, and ' f;
blocking delay of update requests with respect to R/W ratio. ;25
We next examine the effect of the R/W ratio on read-only lock '.:_t.;;.i
requests., Similar to Figures 4.l and 4.2, Figure 4.4 and Figure 4.5 .é.ﬁ
plot the probability of conflict and the probability of deadlock of -:f;
read-only lock requests respectively. These figures show that higher ';ﬂé
R/W ratios reduce significantly both the probability of conflict and Fﬁ*!q
the probability of deadlock of read-only lock requests, i;\&g
Similar to Figure 4.3, Figure 4.6 plots the average blocking delay .E;E;i
of blocked read-only lock requests, and the figure shows that the R/W 7f;;ii
ratio has little effect on the blocking delay of read-only requests. S
7f This occurs because blocked read requests wait only for update transac- };; 5

; tions, and we have shown previously that the R/W ratio has little SL:

- effect on the response time of update transactions, N °
;! We have shown that a higher R/W ratio reduces the probability of E?:‘n
I; conflict and deadlock of read-only lock requests, but it has no effect ibi;:
;ﬂ on their blocking delay, What does this mean in terms of the average o
'ii response time of read-only lock requests? Table 8 shows the average §e}qi

response time of read-only requests, indicating that acceptable
response times occur when the average transaction size is 4 or the sys- e

\ -
- tem load is less than 1. Within this range of transaction size and 'fj}
“» Lo
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system load, when the R/W increases from 1/3 to 3/1, the average

response time of read-only requests decreases only slightly.

This result is surprising because we have previously observed that
the probability of conflict and deadlock of cead-only requests
decreases significantly when the R/W ratio increases from 1/3 to 3/1.
But because the probability of conflict and deadlock is very small to
begin with when the transaction size and system load are within accept-
able range, the reduction in the probability of conflict and deadlock

does not improve significantly the response time of read-only requests.

We next examine the relationship between the R/W ratio and system
through-put. The results are shown in Table 9. The table shows that,
within the acceptable range of transaction size and system load, the
system through-put does not increase significantly, when the R/W ratio
increases from 1/3 to 3/1,

To gain more insight, we did some time series analysis and found
that regardless of the R/W ratio in the incoming transaction stream,
the system is eventually saturated with mostly update transactions.
Figure 4.7 shows the time series of numbers of update transactions
active in a system with R/W ratio equal to 3/1 and multiprogramming
level equal to 64. The figure shows that the number of update transac-
tions active in the system is stablized at about 95% of the multipro-
gramming level, even though 75% of incoming transactions are read-only
transactions. This explains why the system does not perform much
better when the R/W ratio increases from 1/3 to 3/1, because the system

is clogged up with update transactions that complete slowly.

You might have noticed that the database sizes used are relatively
small compared to actual databases. But we have pointed out that the
results apply to systems with short transactions and moderate loads;
therefore the results apply to systems with larger database size,

because the larger the DZ, the lighter the load.
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We simulated two phase locking in various system and application
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environments. We found that R/W has little or no effect on the proba-
bility of conflict and deadlock and the blocking delay of update lock
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requests. In addition, the R/W ratio has little effect on the response

times of update lock requests.

We also found the R/W ratio has little effect om the blocking ;1"

delay of read-only transactions. However, we found that the R/W ratio
has significant effect on the probabilities of conflict and deadlock of
read-only transactions. Increase in R/W ratio significantly reduces the
percentage of probabilities of conflict and deadlock of read-only tran-
sactions. But if the average transaction size is small or the system
load is light, then this reduction in the probability of conflict and
deadlock reduces only slightly the response time of read-only lock
requests. And the overall system through~put is little effected by the
R/W ratio.
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SECTION ¥

Basic Timestamp, Multiple Version Timestamp,

and Two Phase Locking*

Wente K. Lin
Jerry Nolte

f% * A version of this paper appeared in the Third Semi-annual technical
L report of the DDB Control and Allocation Project.
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5. Basic Timestamp, Multiple Version Timestamp,
and Two Phase Locking

Abstract

Using simulation, we compare the performance of the basic times-
tamp, the multiple-version timestamp, and the two Ehaoe locking con-
currency control srotocola., We find that in every system configuration
we have simulated the multiple version timestamp frotocol pexforms only
mg:gxnalli better than the basic timestamp protocol. In addition, we
fi that when the average transaction size is small, both timestamp
protocols outperform the two phase locking protocol. But when the aver-
age transaction size 18 large, the two phase locking protocol outper-
forms both timestamp protocols.
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5.1 Introduction

Many distributed concurrency control algorithms have been rroposed f;;
(Bad[1), Berl1], BEl1[l), Garl[l]), Lin[3), Rosl[l], stell], Stoll], 0
Tho[l]). But how well do they perform?

A few researchers have attempted to compare performance of dif- e
ferent algorithms (Gar[1l], Lin[1], LN[1]), LN[2], LN[3], Mun[l], Riell], B
Thal[l)), and only one of them studied the performance of timestamp pro-
tocols (Lin[1]). .
These performance studies are very difficult to compare, and it is re
almost impossible to integrate their results. They compare different
algorithms, and they make different assumptions about system and appli-
cation environments and employ different measures for system perfor-
mance., Therefore we began a major project that compared the principal e
distinct distributed concurrency control and reliability algorithms, 5
using the same model, assumptions, performance (output) parameters, and
system and application (input) parameters. Some results of the project o
concerning the two phase locking have been reported in Lin[2), LN[1], ff{i
LN[2]), and LN[3]. This paper reports some of the results of this pro- ;f;

ject that concern timestamp protocols.

In particular, this paper reports our findings about the perfor- f; Y
mance of the basic timestamp and the multiple version timestamp proto- :
cols (Ber[l)), and about the comparison of their performance to the per-
formance of the two phase locking protocol. We found that, contrary to 1{{
our intuition, the multiple version timestamp protocol did not signifi- b
cantly incresse the throughput of read-only transactions over the basic
timestamp protocol; neither did it improve the throughput of update
transactions, We also found that both timestamp protocols performed
much better than the two phase locking protocol when the average tran- @
saction s8ize wvas small. But when the average transaction size was :;j
large, the two phase locking protocol outperformed both timestamp proto- N
[ cols. :{5

™
e
ll';

y—— This paper is organized as follows. Section 5.2 describes the
overall simulation model. Section 5.3 describes the specifics of the
basic timestamp and the multiple version timestsmp models. In addition,
the simulation results for these two models are discussed. Section 5.4
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discusses the simulation results of a modified model in which the ratio
of read~only transactions to update transactions is fixed inside the
system, instead of in the incoming transaction stream. Section 5.5 com~
pares the two phase locking with the basic timestamp protocol, and Sec-

tion 5.6 concludes the study. Section 5.7 contains the references.
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N 5.2 The Simulation Model

il Performance of a concurrency control algorithm in a DBMS depends on
ﬁ: many aspects of the entire system. These include system characteristics
;j such as multiprogramming level (number of transactions rumning con-
Eﬁ currently), database size (number of data granules) end granularity with
I' which data can be locked or accessed, communication network, IO devices,
f} memory size, CPU speed, pumber of nodes in the system, and distribution

of the data smong these nodes. Performance is also affected by the

nature of the application — the transactions executed to read or update
the database, Transsction characteristice include transaction size
(number of data granules requested by each transaction), the frequency
of local and remote requests for data, access distribution of the data-
base (probability of each data granule being accessed by a data
request), and whether the transactions only read data or update the
database. Thus, to accurately evaluate the performance of a concurrency
control algorithm, we must include all these factors in the simulation
model, and this is too expensive to do directly.

To simplify the simulation, we model the system and tramsactions in
a highly functional model. Much of the detail of a real distributed
system is captured in a few parameters that are used as inputs to the

simulation model. This approach permits us to greatly reduce the number

of simulation runs necessary and the complexity of the model, while o
retaining umost of the impact that these details have on the performance :lz;b

of the concurrency control algorithms. SRR

We ﬁodel a transaction as a s8sequence of data requests, each ool
requesting a data granule. The size of the data granule is irrelevant

in our model. Between two consecutive data requests, a tramsaction

,'_'{.'(_'.‘..-‘".'.'

incurs a delay called processing delay. The processing delay consists

of communication network delay, I0 delay, and CPU processing delay.

Co

Communication mnetwork, IO devices, and CPUs are not simulated in detail
in our model. Instead we use the processing delay as an input parameter

to our simulation model. For each simulation run, we assume the pro-

cessing delay to have a certain probability distribution, but we vary -
the probability distribution for different simulation runs., We use only

hypoexponential and hyperexponential distributions; therefore each dis-

t tribution can be characterized by its average and standard deviation. ?ﬁ;lf
s -
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Since the processing delay (consisting of communication network
delay, 10 delay, and CPU delay), is an input parameter and is modeled by

an abstract probability distribution function, we make no assumptions .’
about the characteristics of the underlying communication network, IO . ;j
devices, and CPUs, and their relative performances. Imn fact, communica- :?f:
tion networks and IO devices that have different performance charac- tiig

" !

teristics are modeled by different distribution functions. For example,
a distribution function that has small standard deviation models a high
bandwidth or a lightly loaded system, while a distribution function that
has large standard deviation models a low bandwidth or & heavily loaded

Bystmo

Besides processing delay, input parameters of the simulation model
include average transaction size (TZ), multiprogramming level (MP),
database size (DZ), ratio of read-only transactions to update-only tran-
sactions (K/W) entering the system, and access distribution to the data-

base.

We did not explicitly include the frequency of local and remote
data requests as an input parameter because it is captured by the proba-
bility distribution of the processing delay. For example, a system that
executes mostly local data requests can be modelled by a distribution
that has a small mean value. Neither did we include the data granular-
ity as an input parameter, because the data granularity is a function of
the database size and the transaction size. Increasing the granularity
is equivalent to decreasing the database size and the transaction size.

Moreover, we simulated only random access to the database. Every data

granule has the same probability of being accessed by a data request.
We used this uniform distribution because our previous study (LN[1])
showed that more concentrated distributions had the same results as the
uniform distribution in heavier load. The details of these input param-

eters follow.
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L‘lﬁf We simulated two kinds of transactions, read-only transactions and

;

;:fé update transactions, and the R/W ratio determines their ratio in the A
B incoming transaction stream fed to the simulation system.
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Ef(;L Transaction size is assumed to be expomentially distributed with

QIO ] ] ) .

f“:: mean TZ, The mean TZ varies among different simulation rums, but
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remains fixed within a simulation run. We model & read-only transaction
as & sequence of read requests, and an update transaction as s sequence
of read requests (with intention to update later), followed by parallel
update requests (each requesting only one data granule). Thus in an
update request, we require that each data granule be read before it 1is
updated. We assume that an update transaction has two phases: a read
phase and a write phase. During the read phase, an update transaction
issues a sequence of read requests, and during the write phase all
updates are committed in parallel into the databases. This model is
general enough to include all transaction types of interest. For exam-
ple, to model a pure update transaction (one that does not read from the
database) there vwill be only the write phase. To model transactions in
vhich read requests are issued in parallel only once, the read phase

will issue only one read request.

After being granted a data granule, a transaction waits for a
period of time before requesting another granule. This period of time
is the processing delay discussed previously. The average of the pro~
cessing delay is fixed at one for all simulation runs, but the standard
deviation varies among different simulation runs, The simulation
results can easily be scaled to whatever the actual average of the pro-

cessing delay may be.

The multiprogramming level (MP) is fixed within a simulation run,
but it varies among different simulation rums; thus the model is closed

and a new transaction is generated and started only after one completes.

Performance measures (output parameters) of the simulation model
include probability of restart, system throughput, and others that will

be mentioned when specific models are discussed.

Part of the results of the performance of the basic timestamp and

multiple version timestamp protocols are presented in the following sec—-

tions.
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5.3 Basic Timestamp vs Multiple-Version Timestamp

In this section, we first describe the specifics of the basic
timestamp and the multiple version timestamp models, and then we discuss
the simulation results., Much of the detail of the protocol can also be
found in Ber{l]. We describe the basic timestamp model first.

We assign a unique timestamp (drawn from the system clock) to each
transaction when we initiate the transaction. We keep a read timestamp
and a vrite timestamp with each data granule of the database. The read
timestamp and the write timestamp record the timestamps of the last

transactions, reading and writing respectively the data granule.

To synchronize an update tramsaction, during the read phase the
timestamp of the update transaction is compared with the read and write
timestamps of each data granule read. If the timestamp of the update
transaction is smaller than the read timestamp, the update transaction
is restarted immediately to avoid aborting it later when it tries to
commit (since we never abort read-only transactions). If the timestamp
of the update transaction is smaller than the write timestamp, then the
update transaction is also restarted because it tries to read the data
granule after a transaction that has a greater timestamp has updated the
data granule., If the timestamp of the update transaction is larger than
both read and write timestamps of the data granule, then it replaces the
read timestamp of the data granule and the update tramsaction contianues.
During the write phase, the timestamp of the update transaction is again
compared to the read and write timestamps of each data granule updated.
If the timestamp of the update transaction is smaller than the read
timestamp, the update transaction is again restarted. But if the times~
tamp of the update transaction is smaller than the write timestamp, the
write operation is ignored. If the timestamp of the update tramsaction
is larger than both the read and write timestamps of the data granule,
the write timestamp of the date granule is replaced by the timestamp of
the update transaction. If T(t) represents the timestamp of tramnsaction
t, and R(x) and W(x) the read timestamp and write timestamp of data
granule x, the protocol can be summarized as follows. During the read
phase oann update transaction t,
for each x read by t,

if T(t)<rR(x) --> restart t;

" e O
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if T(t)<W(x) —> restart t;
ii. if T(t)>R(x) & T(t)>W(x) —> replace R by T, read proceeds,

And during the write phase of an update transaction t,
if T(t)<R(x) for any x updated by t —> restart t;
else for each x updated by t,

if T(t)<W(x) =--> update to x is ignored, .!
if T(t)>W(x) --> replace W(x) by T(t), commit the update. uﬁi
To process a read request from a read-only transaction, we compare Eigi

its timestamp with the write timestamp of the data granule. If the ;;i"
write timestamp of the data granule is larger, then the read-only tran- :%!
saction is restarted; otherwise the read-only transaction continues, and i;&:

the read timestamp of the data granule is replaced by the timestamp of

the read request if the latter timestamp is greater than the former. In
summary,

T<W —> restart

T>W ~—> read-only proceeds, and replace R by T if R<T.

Performance measures of the model include system throughput (number
of requests completed per time unit) and the probability of restart for
both read requests of read-only transactions and read requests of update
transactions during the read phase. Since in the case of timestamping
protocols, an update transaction may progress to the write phase and
then conflict and abort, we also include the probability of restart of

transactions (not data requests) during the write phase.

The multiple version timestamp model is very similar to the basic
timestamp model. System and application parameters, and conflicts
betveen data requests and data timestamps, were dealt with in the same
way. However, in the multiple version model, we kept four read and four
write timestamps for each data granule; the first one is the smallest
and the fourth one the largest. However, because we did pot simulate
computation within each transaction, we did not keep the data values
corresponding to the four write timestamps for each data granule. A
read-only transaction can access earlier versions of the data if the
timestamp of the read-only transaction is smaller than the largest write
timestamp of the data granule to be accessed. But because we require an

update transaction to read first what it writes, an update transaction

MY . O
- R ]
bR VRUA TETEIN TN TSRS o




-62~-

can only read the latest version; if the R/W ratio is zero, this model
degenerates to the basic timestamp model. For this reason, we did not

simulate any system configuration with R/W equal to 0.

Since the probability of restart for read-only transactions is
already small im the single version basic timestamping protocol, and
since the number of versions does not affect the probability of restart
for update transactions, we decided not to vary the number of versions,
We compare the simulation results of both the basic and the multiple-

version timestamp protocols in the following.

We first examine the probability that a read request (both read-
only request and request of update transaction during the read phase)
will conflict, resulting in the restart of its transaction. Figure 5.l
and Figure 5.2 respectively show these probabilities for the basic and
the multiple-version timestamp protocols. We note that because read-
only transactions pever restarted in the multiple-version timestamp
model, Figure 5.2 contains only datsa for update transactions during the
read phase, We note also that, for some of the heavy load cases, the
system thrashed and never stabilized; therefore the data are not reli-
able, However, they do qualitatively indicate what is happening. Com-
paring these two figures, we find very little difference between the
basic timestamp and the multiple-version timestamp protocols in the pro-

bability of restart during the read phase.

We next examine the probability of restart of update transactions
during the write phase. Figure 5.3 and Figure 5.4 show the results for
the basic timestamp and the multiple-version timestamp protocols, and

the difference between the two figures is very small.

For the basic and the multiple-version timestamp protocols, Figure
5.5 and Figure 5.6 show the system throughput, which is the number of
completed (excluding those aborted) data requests per time unit. Notice
that the average processing delay is always one and that there are
always MP transactions running in the system; therefore if there is no
transaction abortion, the throughput must equal MP, which is the maximum
possible throughput. Combined read~only and update throughputs for sys-
tem configurations that have average transaction size equal to 4 are

within 102 of maximum possible. But combined throughputs of system con-
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figurations that have average transaction size (TZ) larger than 16 are o
less than 301 of the maximal throughput. _ .ﬁ

These two figures show system thrashing when the average transac- L;;
tion size is large or the system load is heavy. If the system is in fll‘
equilibrium, write throughput should be very nearly 1/3 of the read o
throughput, since incoming trinsactions occur in that ratio. However,
this is not true for TZ=32, or for TZ=16, MP=32 and 64. In these cases,
the system thrashed and was jammed with long update transactions that
never finished. These observations show that both timestamp protocols
perform extremely poorly during long transactions or while bearing heavy
loads.

When we compare Figdre 5.5 with Figure 5.6, we find little differ~-

ence between these two protocols in throughput except when the transac-
tion size (TZ) or the system load (T2xMP/DZ) is large, in which case the
throughputs are extremely low and the statistics are not reliable any-

way.

From the observations of this section, we can conclude that both
protocols perform poorly when the average transaction size is large or
wvhen the system load is very heavy. In addition, there is no s8ignifi-
cant difference in performance between the basic timestamp and the mul-
tiple version timestamp protocols. More versions of data do not improve
significantly the throughput of read-only transactions. When the load
is light, the probability of conflict for read-only transactions is very

small, therefore more versions of data do not increase the read-only

transaction throughpﬁt. When the load is heavy, the s8ystem is jammed
with long update transactions that never finish, thus locking out read-

only transactions; therefore more versions of data do not help either.

One may argue that if we do mot allow the system to be saturated
with long update transactions, then the multiple-version timestamp pro-
tocol should perform better than the basic timestamp protocol. We will

test this argument in the next section.
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5.4 Results of a Modified Model

In the last section, we concluded that there is no significant
difference between basic timestamp and multiple-version timestamp proto-
cols in performance, including the throughput of read-only transactions.
One may argue that this conclusion is not valid because the simulation
model should not have allowed update transactions to jam the system,

thus locking out read-only transactions,

To test this argument, we impose the R/W ratio limitation inside
the system, instead of in the incoming transaction stream: that is, the
ratio of the number of running read-only transactions to the number of
running update transactions is always fixed at R/W. All other parame-
ters of the model remain unchanged. The results are shown in Figures
5.7 and 5.8 for the basic and multiple-version timestamp protocols
respectively. We include in the figures data from the previous model

for comparison., These data are marked by *.

Comparing the data of the modified model to the data of the previ-
ous model, we find that by fixing the R/W ratio inside the system,
instead of in the incoming transaction stream, the throughputs of read-
only transactions increase tremendously when the average transaction
size (TZ) 1s large. The reason is that when the R/W ratio is fixed
inside the system, the system can no longer be saturated with long
update transactions that never finish. But when the average tramsaction
size 1is small, fixing the R/W ratio inside the system does not increase
significantly the throughputs of read-only transactions. The reason 1is
that the system is never saturated with long update transactiomns in the

firet place.

When we compare Figure 5.7 with Figure 5.8, we find no significant
difference between the performance of the basic timestamp protocol and
the multiple-version timestamp protocol. This contradicts the earlier
argument that if the R/W is fixed inside the system instead of in the
incoming transaction stream, the -~ultiple-version timestamp protocol
should have higher read-only tramsaction throughputs than the basic

timestamp protocol.

The reason for this surprising result is that both timestamp proto-

cols favor read-only transactions., Whenever there is a conflict between
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an active read-only transaction and an active update tramsaction, both

protocols abort the update transaction. In both protocols, an active
read-only transaction is aborted only if it conflicts with a completed
update transaction that has a later timestamp, and this occurs rarely
because update transactions take much longer to complete. Since read- ;;g
only transactions rarely get aborted in the basic timestamp protocol, .
more versions of data make little difference in read-only transaction

throughput.
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5.5 Timestamp Vs Locking

In this section we compare the performanée of the basic timestamp

protocol with the performance of the two phase locking protocol.

The simulation model for the two phase locking (LN[1], LN[2],
ILN[3]) is similar to the timestamp model except that the two phase lock-
ing is substituted for the basic timestamp protocol. We show part of
the simulation results, specifically the throughput, in Figure 5.9. The
unit of the throughputs is the number of data requests completed per

time unit, excluding requests aborted.

Comparing Figure 5.9 with Figure 5.5, we find that when the average
transaction size (TZ) is small, the basic timestamp protocol outperforms
the two phase locking protocol. But when the average transaction size
is relatively large (TZ larger than 16) the two phase locking outper-

forms the basic timestamp protocol.

To learn why the timestamp protocol outperforms the two phase lock-
ing when the average transaction size is small, we examined our previous
simvlation results on the two phase locking protocol ([Lin2], [NL1],
[NL2]). We found that, in the two phase locking protocol, blocked tran-
sactions tend to wait for long transactions, even when the average tran-
saction size is small. Sinc. long transactions take long periods of
time to complete, blocked transactions tend to wait for long periods of
time. On the other hand, Figure 5.1 shows that when the average tran-
saction size is small, the probability of the basic timestamp protocol
restarting a transaction is very small. Therefore we conclude that when
the average transaction size is small, restarting transactions in the
basic timestamp protocol is better than blocking tramsactions in the two
phase locking protocol. But the reverse is true when the average tran-
saction size is large, because in the timestamp method thrashing is a
serious problem: many transactions are constantly aborted and never fin-

ish.

We must caution that this result must be taken in the context of
our simulation model assumption. In our model, we do not simulate
queueing-for CPU, IO devices, and communication lines. Queueing for
these devices 1is captured in a single model parameter, the processing

delay, which has an erlangian distribution., To validate the conclusions
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in a more detailed model, we are currently modeling explicit queueing
for these devices. Our preliminary results from the more detailed model

- seem to reaffirm the conclusions.
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5.6 Conclusions

We come to three major conclusions concerning the performance of

timestamp concurrency control method.

First, over a wide range of system conditions, the multiple version
timestamp method performs only marginally better than the basic times-
tamp method. When the average transaction size (TZ) is small, read-only
transactions complete quickly and rarely conflict with younger update
transactions that have completed; therefore more versions of data help
only marginally. When the average transaction size is large, the system
is jammed with update transactions, and few new read-only transactions
can start; thus wore versions of data do not improve the throughput of

read-only transactions either. When we fixed the R/W ratio inside the

system to prevent the system from being saturated with update transac-
tions, the multiple version timestamp protocol still performs only mar-
ginally better than the basic timestamp protocol, because read-only
transactions complete quickly and rarely conflict with younger transac-

tions that have completed.

The second conclusion is that when the average transaction size
(TZ) 1is small, the basic timestamp protocol outperforms two phase lock-
ing protocol. But when the average transaction size is relatively
larger, the two phase locking protocol outperforms the basic timestamp

protocol,

The third conclusion is that when the average transaction size is
small, fixing the -atio of read-only transaction to update transactions

inside the system does not improve system performance. But when the

average transaction size is relatively large, fixing the R/W ratio i;ﬁ

inside the system significantly improves the throughput of the system,

because this prevents the system from being saturated by long update .1
transactions. This amounts to giving read-only transactions higher —'1?
priority to enter the system; since read-only transactions complete fas- ?ﬁjg
ter, they also enter faster. 32;23

But we caution that these conclusions be taken in the context of |

the simulation model assumptions. Currently we are altering some of the

assumptions to see whether these conclusions remain true, and prelim~

inary results seem to indicate that they are, 1?Ei
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read-onlg transaction read-only tragnsaction
DZ = 4095, R/W = 3/1 Dz = 8193, B/W = 3/1
MP/TZ 4 16 32 MP/TZ & 16 32
16 0.0016 0.0031 0.0013 16 0.0011 0.0015 0.001
32 .0030 0.0026 0.0017 32 0.,0015 0.0021 0.001
64 0.0049 0.0027 0.0024 64 0.0029 0.0021

Dz = 4096, R/W = 3/1

write transgction write transaction

DZ = 8192, R/W = 3/1

Update Transaction
D2 = 4096, RJW = 0

MP/TZ 4 16 32
16 0.0065 0.0238 0.0248
32 0.0127 0.0333 0.034
64 0.,0227 0.0455 0.0458
Figure 5.1
Average Probabilitg of Restart at Read phase
(Basic TS)

Standard Deviation of Processing Delay = 0.528

MP/TZ 4 16 32 MP/TZ 4 16 32
16 0.0063 0.0236 0.0244 16 .0033 0.0165 0.0177
32 0.0117 0.0329 0.0339 32 0.0067 0.0244

64 0.0239 0.0452 0.0456 64 .0121 0.0337
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o Update Transaction
u DZ = 4096, R/W = 3/1

Ugdate Transgction,
D2 = 8192, R/W =13)

16

32 MP/TZ 4 16 3

0.0247 16 0.0040 0.0l
0.0343 32 0.

0.0240
0 0
0.0459 64 0.0

.0339
0.0453

Ugdate Transaction
DZ = 4096, R/W = 0

.. Figure 5.2

Average Probability of Restart at Read Phase

. (Multiple version T

Standard Deviation of Communications Delay = 0,528

]
R
o

5

:}, et e e v
K A
PR U~ NP AP P AP S




:
; - - T
Update Tranmsaction Update Transgction —_—

D2 = 4096, R/W = 3/1 DZ = 8192, R/W = 3/1 . @
MP/TZ 4 16 32 MP/TZ & 16 3 y
0.033 0.270 0.578 16 0.016 0.190 0.47
0.050 0.459 0.785 32 0.027 0.138 0.61
0.079 0.672 0.886 64 0.049 0.476

02 <
49 e

R
SN

Ugdate Transaction
DZ = 4096, R/W =0 ‘
MP/TZ 4 16 32 NN

16 0.031 0.29
32 <049 0.46
64 .083 0.83

(=] =]
Hoon
[=]==]
NI
=37 -1-
Sy

.. Figure 5.3
Average Probab11it¥Bof,Rest rt at Write Phase
asic
Standard Deviation of Processing Delay = 0.528
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Update Transgction Update Transaction —d
DZ = 4096, R/W = 3/1 D2 = 8192, R/W = 3/1 . @

MP/TZ2 4 16 32 MP/TZ 4 16 32

‘:ff Ugdate Transaction
N DZ = 4096, R/W = 0

MP/TZ 4 16 32

Figure 5.4

o Average Probzbili;y of Restart at Write Phase
" . (Multiple version TS
Standard Deviation of Communications Delay = 0.528
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Read-Onlg Transaction
»

Read-Onl; T§7nlnct'on
?»

DZ = 4096, R/W = 3/1 DZ = 819 We=3/1
MP/TZ 4 8 16 32 MP/TZ & 8 16 32
16 11.60 7.30 3.67 0.90 16 11.84 8.6 5.89 1.65
32 23,21 11.80 3.29 0.43 32 23,04 1l4.4 6.17 1.06
64 42.82 14.90 1.61 0.15 64 45.50 24.5 5.12

Update Transgction
DZ = 4096, R/W = 3/1

Update Transaction
Dz = 8192, R/W = 3/1

MP/TZ 4 8 16 32 MP/TZ & 8 16 32
16 3.72 2.34 1.25 0.23 16 3.96 2.88 1.98 0.
32 7.57 3.85 0.93 0.10 32 1.64 4,78 l.gg 0.
64 13.80 4.80 0.42 0.03 64 15.29 8,23 1.
Update Transaction
D2 = 4096, R/W = 0
MP/TZ 4 16 32
16 14.15 1l.14 0.13
32 26.24 0.97 0.03
64 44.19 0.09 0.01
Figure 5.5

Through-put in(%eqqests per Time Unit

asic TS)

Standard Deviation of Processing Delay = 0.528
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Read-Onl Transactxon Read~-Onl Transactxon
DZ = 819! R/W = 3/1 DZ = 891;2 R/W =
MP/TZ & 16 32 MP/TZ 4 16 32
16 11.8 3.6 1.3 16 11.6 5.7 1.6
32 23.2 1.8 0.4 32 23.2 6.6 1.2
64 43.5 1.6 0.3 64 46,0 4.5 1.0

ate Transagtion
89192, R/W = 3/1

Update Transgction
= 8192, R/W = 3/1

MP/TZ 4 16 32 HP/TZ 4 16 32
16 4.0 l.14 0.33 16 4.0 1.93 0.53
32 7.8 0.56 0.08 32 7.5 2.19 0.31
64 l4.4 0.39 0.07 64 15.2 1.28 0.21

ate Trans ctzon

= 4096,
HP/TZ 4 16 32
16 14.15 1.14 0.13
32 26.24 0.97 0.03
64 44.19 0.09 .01
Figure 5.6

Through-fut in Requests per Time Unit
Multiple Versions ngm
Standard Deviation of Communications Delay = 0.528
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2
: R/MDZ T2 M Read-0nly Update = Probability Probability  Probabilit
Thru-Put Thru-Put of Restart  of Restart{ of Restart
: ?Read—Only) Update During Update During
o Read-Phase) Write-Phase)
62}: 3/1 8192 4 16 10.7 4.8 .0007 .0040 .0164
o * same as above 11.8 4.0 .0011 .0033 .0160
) 3/1 8192 4 64 47.0 13.3 .0021 0147 « 0485
* game as above 45.5 15.3 .0029 .0123 . 0490
3/1 8192 16 16 10,3 1.17 .0008 .0379 .1907
same as above 5.89 1,98 ,0015 .0165 .1900
3/1 8192 32 32 22,9 « 044 «0001 .0250 .8140
* game as above 1.06 «290 .0011 <0254 «6149

* results of the model with W/R ratio fixed in the input stream

. Figure 5.7
B s1c.T1mestagg Model
with R?W Fixed Inside the System
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R/W DZ TZ MP Read-Only Update Probability Probabilit Probabilit —

Thru-Put Thru-Put ?f Restart ~ of Restart of Restart{ 0

Read-Only) Update During Update During .

Read-Phases Write-Phase) '}':

3/1 8192 4 16 10.9 4,59 0 .0039 .0150 g

* game as above 11.6 4,00 0 .0040 .0140 B

3/1 8192 4 64 46 .6 13.4 0 .0134 0494 4

* game as above 46.0 15,2 0 .0126 . 0480 “.4

3/1 8192 16 16 10.9 1.62 0 0147 .1890 .o
* game as above 5.7 1.93 0 .0126 .1650
3/1 8192 32 32 22.9 1.69 0 0240 «5370
* game as above 1.2 0.31 0 .0255 6290

* results of the model with R/W fixed in the input stream

Figure 5.8
Hul?iplg Version Timestamp
W Fixed Within the System

With R
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SECTION VI

Performance of Distributed Concurrency Control¥

Wente K. Lin
Jerry Nolte

* A version of this paper appeared in the Distributed Database System
Qestgners Handbook, prepared for the DDB Control and Allocation Pro-
ject,
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6. Performance of Distributed Concurrency Control S

6.1 Introduction

f
S ST 1

ey
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Many factors effect the performance of a distributed concurrency
algorithm:

1. I0 delay, S

2, communication delay,

3. ratio of read-only to write transactions,

4, database size, transaction size,

5. system multiprogramming level,

6. distribution and replication of the database,
7. overhead of deadlock detection,

8. and system load, defined as the product of transaction size and mul-
tiprogramming level divided by the database size.

Our simulation study of the performance of distributed concurrency con-
trol algorithms shows that four of these factors have more significant
impact than the others: I0 delay, communication delay, transaction size,
and system load. Hence we divide our simulation results into groups and
discuss them separately by classifying the system environment as either
10-bound or communication bound, and as either short transaction loaded
or long transaction loaded. We consider a system to be IO bound if
queueing for I0 or CPU resources is a more significant problem than
queuing for communication channel; and we consider a system to be com-
munication bound if queuing for communication channel is a more signifi-
cant problem than queuing for I0 and CPU resources. We consider a sys-
tem to be short transaction loaded if the average number of data items
requested by the transactions (or transaction size) is less than 0.052
of the database. The system is long transaction loaded if the average
is larger than 0.2X of the database. If the average is between 0.052
and 0.2 of the database, the classification of the system as short
transaction loaded or long tramnsaction loaded depends on the system

load, Details of the classification can be found in Figure 6.l.

Thus we present four categories of system environments: short transac-

tion loaded and 10 bound (SI0), short transaction loaded and communica-

tion bound (SCM), long transaction loaded and 10 bound (LIO), and long
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System Load <102 > 102
Trans Size
< 0.05% Short Short
0.052<0.2% Short Long
> 0.22 Long Long

Trans Size: Average number of data items requested by a transaction as
a percentage of the database size.

System Load: Trans Size multiplied by the multiprogramming level.
Database Size: Total number of data items in the database.
Figure 6.1 Sgstem Classification
(Short Loaded or Long Loaded)

transaction loaded and communication bound (LCM). For each of these
four environments, we compare the performance of various concurrency
control algorithms, taking into consideration the factors that are not
used to classify the system environment -—- i.e. multiprogramming level,
ratio of read-only to write transactions, distribution and replication

of the datasbase.

We first describe, in Section 6.2, the distributed DBMS model that
we use to evaluate these algorithms. We then define and describe, in
Section 6.3, the concurrency control algorithms that we evaluate, We
compare these algorithms in Section 6.4.1 through 6.4.4 for each of the
four environments. In Section 6.5 we summarize the results of Section

6. Details of the simulation results can be found in the Appendix.

To use this section as a design guide, a system designer must first
clasgify his system environment, using the following three parameters.
First, he must decide whether his system environment is I0 bound or com-
munication bound. Second, he must estimate the average number of data
items, as a percentage of the total number of data items in the data-
base, requested by a transaction (transaction size). Third, he must
estimate the average system load, which is the product of the transac-
tion size and the multiprogramming level of the system (number of tran-
sactions running concurrently). Using these three parameters and Figure
6.1, the-designer can find his system classification. For each classif-
ication, he can find the comparison of various distributed concurrency

control algorithms in Section 6.4.l1 through Section 6.4.4.
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0y 6.2 Performance Model '?ﬁ
We assume that there are two kinds of transactions: read-only tran- .
sactions and write transactions (update transactions)., Write transac- 13};
tions always read what they write, and write what they read. This E:;Z
assumption may seem restrictive, but it is a good approximation of real E;;Q
applications. Our earlier simulation results [LIN8la] showed that the . .}
total number of requests and the ratio of read-only requests to write ;;ji
requests active at any moment in the system have much greater impact on -
the system performance than the ratio of read-only to write transac- —_—
tions. Moreover our analysis shows that a more general assumption of fﬂ!,
transactions would not favor any concurrency control algorithm; thus for ;ﬁf
performance comparison of the algorithms, this assumption would not dis- ::i;
tort the results. To use the results of this section to evaluate the KN
performance of a system that has transactions reading more than writing, B‘.‘.
the ratio of read-only to write transactions in the system can be ffﬁ
.

adjusted upward.

A read-only transaction consists of a sequence of read-only
requests, and each request reads a data item., A write transaction con-
sists of a sequence of write requests (update requests), followed by a
two-phase commit, Requests from a transaction are processed sequen-
tially; another request is initiated only after the previous one has

been successfully processed.

As previously described, a distributed DBMS consists of TMs,
schedulers, and DMs. Each transaction is managed by a TM, which

sequences its requests and sends them to the appropriate scheduler to be

processed. If the scheduler site is different from the TM site, a com-

munication delay is incurred.

If a request is read-only, the scheduler requests a read lock for . @)
the requested data item (assuming that a two phase locking algorithm is ;
used). Depending on the particular concurrency control algorithm used, l‘;,

some lock managers may grant the lock without checking whether the

request conflicts with another tramsaction. Other lock managers may -

check for the conflict. If a conflict is found, the read-only request

.fﬂf waits and incurs a blocking delay. Depending on the concurrency control

f;;ﬁ algorithm used, the scheduler way initiate a deadlock detection when




blocking occurs, thus incurring processing and possibly communication
overhead. When the lock for the requested data item is obtained, the
scheduler sends the read-only request to the appropriate DM, and the
read-only request incurs a processing delay. A read-only transaction

ends after all its requests have been successfully processed.

A write request is processed in a manner similar to a read request,
except that successful processing of all write requests of a tramsaction
is alwvays followed by a two-phase commit, and a write transaction ends
after the two-phase commit is successfully processed (two-phase commit
is the only reliability algorithm that we use in our simulation of con-
currency control algorithm),

If timestamp based algorithms are used, a timestamp is assigned to
each transaction, and requests from the transaction inherit the transac-
tion timestamp., Each data item also has read and write timestamps that
record the timestamps of the transactions that last read from (or write
into) the data item. For all the timestamp algorithms that we have
evaluated, the scheduler always resides at the site of a DM, and a
request is always sent to the scheduler at the site where the data is to
be accessed. When a scheduler receives a request, it compares the
timestamp of the request with the read and write timestamp(s) of the
data item, and it may or may not delay the request, depending on the
particular slgorithm used. If the request is not blocked, it is sent to

the DM at the scheduler site, and the request incurs a processing delay.

We simulate both IO bound and communication bound system environ-
ments. In the IO bound environment, we explicitly simulate queuing for
local processing, which combines cpu and I0 processing. We differen-
tiate between local processing of simple messages, such as lock request,
lock release, and deadlock detection, and local processing of data
requests, The latter needs more processing time than the former. 1In
the IO bound environment, we do not simulate queuing for communication
channels. Communication delay is simply simulated by a delay drawn from

a probabilistic distribution.

In the communication bound environment, we explicitly simulate
queuing for communication channels, but not for local processing

resources. In some, cases, we differentiate between message and data
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transmission. The latter takes longer than the former. We simulate
local delay (combining IO and cpu processing) by drawing a random number

from a probabilistic distribution.

The performance parameters that we use to compare distributed con-

currency control algorithms include read throughput, write throughput,

average read response time, and average write response time. Read
throughput is the number of read-only requests successfully completed

per time unit; read-only requests processed and subsequently aborted are
not included. The write throughput is similarly defined. Read response
time is measured from the time a read-only request is initiated by a TM
to the time when the next read-only request of the same transaction is
initiated by the same TM. Thus, it may include communication delay,
blocking delay, and processing delay. Average read response time aver-
ages over the response times of all successfully completed read-only

requests. Average write response time is similarly computed.

In addition to blocking delay, communication delay, and processing
delay, other factors also affect average response times and throughputs
(e.g., transaction abortion, deadlock detection, and multiple versions
of data). The concurrency control algorithms evaluated in this section
can be differentiated by the way they trade off these factors. Some
algorithms trade longer blocking delay for fewer transaction abortionms,
and others trade reversely. Some trade more communication delay for
less blocking delay, and others trade reversely. We describe these
algorithms in the next section. In Section 6.4, based on the total
throughput, we compare and rank these algorithms. Detailed data of the

performance parameters can be found in the Appendix.

6.3 Description of Algorithms

The algorithms that we will consider are listed below. Selection
of these algorithms is based on our earlier heuristic evaluation
reported in [BERN8la]. The selected algorithms were shown to perform
better than the algorithms discarded. Names of some algorithms are
linked by the conjunctive "and" (e.g. Primary Site and Primary Site).

The term before the conjunctive describes the method used for read
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requests, and the term after the conjunctive describes = method used

for

write requests. These algorithms are described briefly in this sec-

tion and summarized in Figure 6.2. Details of these algorithms can be

found in the references.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

Primary Site and Primary Site Two Phase Locking (C-C)
Primary Copy and Primary Copy Two Phase Locking (P-P)
Basic and Basic Two Phase Locking (B-B)

Basic snd Primary Copy Two Phase Locking (B-P)

Basic and Primary Site Two Phase Locking (B~C)

DDM Multiple Version and Optimistic Two Phase Locking (DDM)
Basic and Optimistic Two Phase Locking (Opm)

Majority Consensus Timestamp (Maj)

Wait-Die Two Phase Locking (Die)

Basic Timestamp (BaT)

Multiple Version Timestamp (MvT)

Dynamic Timestamp (Dyn)

The SDD-1 algorithm is not explicitly covered because the Dynamic

Timestamp algorithm is an improved version of it ([LIN79, [LINS1]).

Neither is the Conservative Timestamp algorithm covered, because this

algorithm essentially executes transactions serially in timestamp order.
Thus it can perform better than other algorithms only when the transac-
tion size is very large and the system load is extremely heavy and con-

current execution of tramnsactions becomes counterproductive.

The Primary Site and Primary Site method is essentially a central-
ized two-phase locking method. All requests for read locks and write

locks are sent to and processed by a designated primary site, which may

use

saction abortions for more transaction blocking, and it checks for lock

backup sites to improve resiliency. This method trades fewer tran-

conflict as early as possible. It detects deadlock as early as possi- Af?
ble, and it avoids distributed deadlock detection; but it has a T
bottleneck at the primary site. :
The Primary Copy and Primary Copy method is a generalized version f-!g
of the Primary Site and Primary Site method. All requests for read ﬁi:ﬁ
locks and write locks are sent to and processed by a designated primary -f:?i

copy site, However, primary copy sites for different data items may be




different, thus distributed deadlock may occur. This method also trades
fewer transaction abortions for more transaction blocking, and it checks
lock conflict as early as possible. It requires distributed deadlock
detection, but it may dglay deadlock detection to reduce communication

overhead.

The Basic and Basic method sets read locks and reads data locally
if a local copy is available; otherwise it locks and reads the closest
copy. It sets write locks globally. For each update request, an update
lock is requested from all copies, and the update request is granted
only after locks from all copies are obtained. This method trades fas-
ter read-only transaction response time for slower write tramsaction
response time, It also trades more transaction blocking for fewer tran-
saction abortions. It checks for lock conflict and deadlock as early as

possible, and at the expense of more communication overhead.

The Basic and Primary Copy method processes read requests as the
previous method does, but it requests write locks only from a designated
primary copy. This method checks for most lock conrflict as soon as pos-
sible, but it may delay distributed deadlock detection to reduce commun-
ication overhead. This method also trades fewer transaction abortions

for more transaction blocking.

The Basic and Primary Site method is similar to the last method
except that update lock requests are sent to a central site instead of
to several primary copy sites. Thus deadlock detection is more central-
ized than in the previous method, and overhead is more centralized at

the primary site,

The DDM (CHAN82a, CHAN82b] method avoids conflict between read
requests and update requests by keeping several versions of each data
item. For each update request, DDM locks locally (if a local copy
exists, or locks the closest copy). The update lock is propagated to
other copies at transaction end. Detection of most conflicts among
update requests 1is delayed uncil transaction end. Thus blocking de}ay

is minimized for most write transactions at the expense of more transac-

tion abortions at transaction end.
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:?1. The Basic and Optimistic method sets read and update locks locally,
;\x if a local copy exists; otherwise it locks the closest copy. The update
:iji lock is propagated to all copies when the transaction that holds the
EI?: update lock ends. Thus, distributed lock conflict checking and deadlock
ii;: detection is delayed until a transaction ends. This algorithm reduces
,\)_ transaction blocking delay at the expense of more transaction abortionms.
E;j- The Majority Consensus algorithm is similar to the Basic Optimistic
f?" algorithm. Each transaction has two phases: a read phase and a commit
( phase. During the read phase, a transaction reads locally if a local
;'- copy exists; otherwise it reads the closest copy. Timestamps of data
A items read by a transactions are recorded. During the commit phase,
;i}i both read-only and update transactions must be certified by comparing
}i; the timestamps of the data read by each transaction to the transaction
ff;j timestamp. Because of the certification step, read-only transactions
:?2 require more communication overhead in this algorithm than in the Basic
.23{ Optimistic algorithm. The details of the algorithm can be found in
k ‘ [BERN81a,THOM79). If the algorithm is modified to favor read-only tran-
- sactions 8o that read-only transactions need no certification, then it
.i; requires no more communication overhead than the Basic Optimistic algo-
- i. rithm. This algorithm checks for lock conflicts as late as possible,
. ? and it trades less transaction blocking for more tramsaction abortions.
;i; | In the Wait-Die algorithm, a unique sequence number is attached to
LS every transaction. A transaction always locks locally if a local copy
;:Q is available; otherwise it locks the closest copy. The locks are pro-
i pagated to other copies when the transaction commits. Whenever a tran-
:f’: saction is blocked by another transaction, the algorithm compares the
Ekil sequence numbers of the two transactions. If the blocked transaction
f ;: has a lower priority sequence number, it waits, otherwise it aborts.
3;§ This algorithm checks local lock conflict as soon as possible, but it
Ezi checks distributed conflict at transaction end. It has no transaction
.%15 deadlock (at the expense of more transaction abortions).

In the Basic Timestamp method, a read and a write timestamp are
attached to each data item of the database. Each transaction that reads

or vpdates the data item updates its read or write timestamp. Conflict

is detected by comparing the timestamp of the transaction that reads or

-
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writes a data item with the timestamps of the data item, and not by com-
paring the timestamps of two transactions as done by the Wait-Die algo- . O
rithm., This algorithm is similar to the Wait-Die algorithm because it : E

also avoids transaction deadlock. Unlike the Wait-Die algorithm, it has

no blocking delay and possibly has more transaction abortions. This
algorithm may have fewer transaction abortion than the Wait-Die algo- )
rithm when most transactions are read-only, because it allows two tran- -
i:: sactions (a read-only and a write) to access the same data item simul-

taneously.

@
The Multiple Version Timestamp algorithm is a genevalization of the B li?

previous algorithm. It keeps several versions of each data item in

order to reduce conflict between read-only transactions and update tran-

sactions. Thus, this method trades more overhead of maintaining multi-

ple data versions for fewer transaction abortions.

The Dynamic Timestamp algorithm [LIN79, LIN81] is an improved ver-
sion of SDD-1 algorithm; it is unique among all the algorithms that we

will compare for the following reasons. It requires tramsaction times-

tamps but not data item timestamps. It does not avoid transaction

blocking, thus it trades more transaction blocking for fewer tramsaction

abortions. But it uses preanalysis of transactions to reduce unneces-

sary transaction blocking. This algorithm may require a lot of communi-

cation overhead when many null write messages are needed [BERN82, LIN79,

LIN81], and its performance may depend on system load [LINBl]. Thus it

may perform poorly in some system environments.

The principal characteristics of these algorithms are summarized in

Figure 6.2,
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b: transaction blocking is preferred. ]
a: transaction abortion is preferred.
m: both blocking and sabortion are used.
8: conflict or deadlock is checked as soon as possible.
1: conflict or deadlock is checked as late as possible. ——
x: local conflict is checked as soon as possible, but 1@
distributed conflict is checked at tramsaction end.

" ": the item does pot apgli. : SN
2: twvo-phase locking scheduler. T
t: timestamp scheduler. R
¢: certifier scheduler, .
2,c: mixed 2-phase locking and certifier scheduler. B
cn: centralized. i @
d: distributed. @]
n: do nothing. T
p: primary copye. A
v: voting, RS
:;-;::-f:J

Figure 6,2 Summary of Concurrency Control Algorithms ';»'.-j:ﬁ'
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.- 6.4 Performance Evaluation

6.4.1 Short Transaction Loaded & I0 Bound

i:% In this section we compare the performance of distributed con-

? currency control algorithms in a system environment in which most tran-
i;ﬁz sactions are relatively short and I0 resource is the performance
Esgf bottleneck. The comparison of these algorithms is summarized in Figure
e

6.3. The comparison is based on actual simulation results except for
{ the Wait-Die, Majority Consensus Timestamp, and Dynamic Timestamp algo-
rithms. The evaluation of the Wait-Die algorithm is based on its simi-

larity to the Basic Timestamp algorithm; the evaluation of the Dynamic

Timestamp algorithm is based on the results of [LIN81]; and the evalua-

tion of the Majority Consensus Timestamp algorithm is based on its simi-

o~ 4-'

PO larity with the Basic Optimistic algorithm,

e

:}i: Figure 6.3 shows that five algorithms perform better than others:
= the Ba - Timestamp, Multiple Version Timestamp, DDM, Optimistic, and

Wait-Die algorithms,

< In the short transaction loaded and I0 bound environment, we found }f:j
-:if that transaction abortion is a better strategy than tramsaction blocking JQJQ
) (i.e. it is better to abort than to wait). The abortion strategy is

used by the Basic Timestamp and Multiple Version Timestamp algorithms,

S
DR and to a large degree by the Wait-Die algorithm. We also found that it :.~
R is better to delay lock conflict detection than to detect lock conflict Ny :
K3 early. Both the DDM and the Basic Optimistic algorithms use the delay %“»..!

strategy. o

Although the DDM algorithm uses locking for write tramsactions, and

L the Optimistic algorithm uses locking for both read and write tramsac-
tions, blocking occurs only among local transactions that access data
St from the same site. Transactions running at different sites never block

each other. Write locks are propagated to other sites at transaction

OiCs end, then conflicts among transactions running at different sites are
D8 detected -and always result in transaction abortions. Therefore perfor-
mance of these two algorithms is closer to those of timestamp algorithms

than to those of two-phase locking algorithms. However, notice that the




- WP TR T g g W W w R w T e e TR TTY e 8w w v WYL R R Tl e Ty T T
LR B il B e n Avil S A-i Jrt - so srin Bes Jhan Jen 2 5 AaChAe e et it Jueci v sitet Al Sl oA S Sk CeP S SIS S O S St

J‘ .'..

_91_

DDM and Basic Optimistic algorithms always abort transactions at tran-—

- LA
« 5N et
. et te Te T e

saction end, while the timestamp algorithms may abort transactions at an L
i: earlier phase of their execution. |
SQ, These five algorithms perform equally well in most cases. The ;
N timestamp algorithms perform better than the DDM and Basic Optimistic »%‘

algorithms when the database is fully redundant (thus read-only transac-—

tions complete quickly), the R/W ratio is high (probability of conflict
Zii among data requests is small), and local delay is large (local blocking
. delay is large and abortion at transaction end is expensive). However “*ji
- when the database is less redundant, the DDM and Basic Optimistic algo- 5
‘?f rithms perform slightly better than the timestamp algorithms. Both -
.fi read-only and write transactions require some remote data accesses and » d
- take longer to complete, and this causee the probability of comflict g%;i
A among transactions to rise and the timestamp algorithms to abort more :
'é: transactions. -Q;?f
-52 The Basic Timestamp algorithm performs as well as the Multiple Ver- :

sion Timestamp algorithm, and the latter requires more overhead and ?}?’
. storage space for keeping multiple versions of data [LINN83]. Therefore :j;i~
. the Basic Tiwestamp algorithm is preferable to the Multiple Version
v?' Timestamp algorithm, unless the multiple versions of data are required -
. in any case for database recovery and resiliency. Similarly, the ff?!
o difference in performance between the DDM and Basic Optimistic algo- 2
;:: rithms is very small, and the former needs higher overhead and more -_ j
n storage space for keeping multiple versions of data. The Basic Optimis-— ﬁ%ik

tic algorithm is preferable, unless the versions cf data are required in

any case for database recovery and resiliency.

The Wait-Die algoritam performs slightly worse than the Basic

Oy R
£,

Timestamp algorithm when most tramsactions are read-only. When a read-
only transaction conflicts with a write transaction, the timestamp algo-
rithms never abort the read-only transaction, and they abort the write
transaction only when a nonserializable execution may occur. However
when most transactions are write transactions, the Wait-Die algorithm is
preferred because it performs as well as the Basic Timestamp method and

it needs no data item timestamps, which require storage space and pro-

A cessing overhead.
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The Dynamic Timestamp algorithm performs best when most transac- ___,:‘:
tions are read-only, communication is fast, database is almost fully .
"j:: redundant, and preanalysis can be done on most transactions. In this ::;Ij:;
environment, the fast protocols, Rl, Rla, Rlab, and R1b [LIN79], LIN82] ’
';':"T apply to most transactioms, Aisuming system conditions remain the same S
. except that the database is not redundant, the Dynamic Timestamp algo- :?'_.,
« rithm still performs relatively well, because more efficient protocols N
(R2, R2a, R2ab, and R2b) apply to most transactions. These protocols -
A are not as e¢ificient as the group of Rl protocols, but they are rela-
ALY tively fast compared with R3 protocol. In all other cases, either when i
,:l::: the communication is slow or when most transactions update the database, ".
: the Dynamic Timestamp algorithm is not efficient. \
: The Majority Consensus algorithm performs reasonably well, but not ".
::f:j as well as the Basic Optimistic algorithm. The Majority Consensus algo- i
S:- rithm as proposed in [THOM79] requires extra communication overhead for
::::::: read-only transactions. If the algorithm is modified to favor read-omly :'_;::::
transactions, so that read-only transactions need not be certified, then @E‘
E": it would perform as well as the Basic Optimistic algorithm. N
:.\_ To summarize, in this environment transaction abortion is a better -."}\'
5 strategy than transaction blocking, and delayed lock conflict checking p
is a better strategy than early lock conflict checking. v 1
N
1- 6.4,2 Short Transactions & Communication Bound el
I. In this section we compare the performance of distributed con- @‘—
"'_\- currency control algorithms in a system emviromnment in which most tran- t
k‘\-j sactions are relatively short and communication channel is the perfor-
}; mance bottleneck. The comparison of the algorithms is summarized in o
_ Figure 6.4. The comparison is based on actual simulation results except
for the Wait-Die, Majority Consensus, and the Dynamic Timestamp algo- (
’ rithms., The evaluation of the Wait-Die algorithm is based on its simi- "'-“
T larity to the Basic Timestamp algorithm; the evaluation of the Dynamic DR
.’ Timestamp algorithm is based on the results of [LIN81]; and the evalua- h
., tion of the Majority Consensus algorithm is based on its similarity to
\ the Basic Optimistic algorithm, (::j:Z::
~ DA




N
~ e
", =93~ e
L
v
{ .
: B-B P-P C~C B-P BaT MvT DDM Opm Maj Die Dyn
'.:; R/W L/C  Red .
. low * full 6 4 5 3 1 1 1 1 2 1 3
" low low full 6 4 5 3 1 1 1 1 2 1 3
! high low full 6 4 5 3 1 1 1 1 3 1 3
high high full 4 4 5 3 1 1 2 2 3 2 1
high high part 6 6 72 5 3 3 1 2 3 4 2
™. high low part 5 5 6 4 2 2 1 1 2 3 2
A low * part 6 4 5 4 2 2 1 1 2 2 3
N Rank 1 is best and Rank 6 is worst,
Rank numbers have no absolute meaning. They only show relative
performance across a row, not across a_column. .
- R/W: "Ratio of Read-onli transactions to Write transactions
- L/C: Ratio of Local delay to Communication delay, excluding
- queuing delay
< Red: Redundancy of the database
- * : Does not matter
Figure 6.3 Performance Comparison: Short
4 Transaction Loaded & IO Bound
™ Figure 6.4 shows that seven algorithms perform better than the oth-
N ers: Basic-Primary Copy, Basic Timestamp, Multiple Version Timestamp,
L DDM, Basic Optimistic, Wait-Die, and Dynamic Timestamp.
i We found that transaction sbortion, similar to the SIO environment, :j;f}‘
- is a better strategy than transaction blocking, and that delayed lock o
conflict detection is a better strategy than early detection. However, :‘;2 -
because of the communication channel bottleneck, performance of the if:;'
\ R
3 algorithms that require extra communication messages degrade in some »ﬁ?;?
N cases, {;;;:-
. 20
The Basic Timestamp and Multiple Version Timestamp algorithms per- NG
E form best in all cases. However, when the database is fully redundant, EI&Z
< the DDM and Basic Optimistic algorithms perform just as well. Read-only :Eﬁfﬁ
" transactions never incur communication delays, and write transactions ;55;:'
o incur communication delays only during the commit phase. Therefore T
o transactions finish fast, blocking delay is shorter, and asbortion at j{;f:{'
Y transaction end is less expensive. wel
B I TR WA
:‘ The Majority Consensus algorithm, as proposed in [THOM79], does not e
. perform -well because of the extra communication messages required for - al.
f_ read-only transactions. If the algorithm is modified to favor read-only
‘. transactions, so that read-only transactions need not be certified, the
¥
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algorithm would perform &8 well as the Basic Optimistic- algorithm.

The Wait~Die algorithm performs just as well as the timestamp algo-
rithms in most cases. However, when most transactions are read-only,
the Wait-Die aslgorithm unnecessarily aborts more read-only transactions
than the timestamp algorithms, thus performing worse than the timestamp
algorithms.

The DDM algorithm performs as well as the timestamp algorithms when
the database is fully redundant. However, when the database is less
redundant and most transactions are read-only, its performance degrades
as shown in PFigure 6.4. When the database is not fully redundant,
read~only transactions require one extra communication message, which

causes a long delay in a communication bound environment.

The Basic-Primary Copy algorithm performs 102 to 202 worse than the
best algorithms in all cases, because it incurs extra communication mes-
sages wvhen obtaining locks from the primary copies, and it uses transac-
tion blocking instead of tramsaction sabortion. The Dypamic Timestamp
algorithm performs best when most transaction are read-only and can be
preanalyzed. In this environment, the most efficient protocols can be

used and communication overhead for null-write messages is minimized.

Since the Basic Timestamp algorithm performs as vell as the Multi-

ple Version Timestamp algorithm, the former is preferable unless the
multiple versions of data are required in any case for database recovery
and resiliency. Similar observations apply to the DDM and Basic
Optimistic algorithms [LINN83]. ’

Our conclusion is that in this environment abortion is better than
blocking, and that delayed lock conflict checking is better than early
lock conflict checking. However, some algorithms that use these two
strategies may not perform well in some cases because they require extra

communication messages.
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1 is best and Rank 6 is worst,
Rank numbers have no absolute meaning. They only show relative
performance across a row, not a column, .
R/W: Ratio of Read-onli transactions to Write transactions
L/C: Ratio of Local delay to Communication delay, excluding
queuing delay
Red: Redundancy of the database
* : Does not matter

Figure 6.4 Performance Comparison: Short Transaction Loaded
& Conmunication Bound

6.4.3 Long Transaction Loaded & I0 Bound

In this section we compare the performance of distributed con-
currency control algorithms in a system environment in which most tran-
sactions are relatively long and IO resource is the bottleneck. The
comparison is summarized in Figure 6.5. The comparison is based on
actual simulation results except for the Wait-Die and Majority Consensus
slgorithms, The evaluation of the Wait-Die algorithm is based on its
similarity to the Basic Timestamp algorithm; and the evaluation of the

Majority Consensus algorithm is based on its similarity to the Basic
Optimistic algorithm.

Figure 6.5 shows that three algorithms perform better than the oth-
ers: Basic Primary, DDM, and Basic-Optimistic.

In this environment (long transactions, heavy system load) transac-
tions conflict with each other more oftem, but only a fraction of the
conflicts lead to transaction deadlocks. Thus, transaction blocking is
better than indiscriminate transaction abortion. Moreover, prompt lock
conflict -detection is better chan procrastination., Lock conflicts that
are detected at transaction end alvays lead to deadlocks. The Basic
Primsry, DDM, and Basic Optimistic algorithms use the blocking strategy.
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The Basic Primary algorithm uses the early lock conflict detection stra~

- tegy.
s
Z}j; The Basic Primary Copy algorithm performs best in this envirooment
'féf because it does not abort a transaction unless it deadlocks, and it
i detects lock conflicts as soon as they occur. However, when most tran-
j{;- sactions are read-only, and the database is not fully redundant, the
;ié Basic Primary Copy does not perform as well as the DDM and Basic-
E:E Optimistic algorithms, because the extra communication messages required
; by the Basic Primary Copy algorithm for write~locks and deadlock detec~
\:,3 tions does not outweigh the extra transaction abortions by the DDM and
::gﬁ Basic-Optimistic algorithm.
e
;;352 The DDM and the Basic Optimistic algorithms perform well in par-
52_ tially redundant databases, because more lock conflicts are detected
i;i: during the reading phase of transactions and less transactions abort at
ji:: the commit phase. However, when the database is fully redundant, most
i?f lock conflicts are detected during the commit phase, which always leads
‘: ] to deadlocks and transaction abortiomns, thus resulting in the poorer
i;i performance of these two slgorithms in this conditions.
:§§ The timestamp algorithms do not perform as well as the Basic-
'$f' Primary method because transaction blocking is better than transaction
'a:: abortion. However, the timestamp algorithms perform better than the DDM
f?.; and Basic-Optimistic algorithms, when the database is fully redundant.
:ﬁg Read-only transactions incur no communication delay and complete
quickly; the read-phase of write transactions also completes quickly.,
i:ﬂ Thus conflict between read-only transactions and write transactions that
:E% result in the abortion of write transactions is reduced. In addition,
:’; vhen the database is fully redundant, the timestamp algorithms detect
N more conflicts at the read~phase, thus aborting more transactions at

earlier stages of processing, while the DDM and Basic-Optimistic algo-
rithms detect more conflicts at the commit phase, thus aborting more
transactions at their ends. However, vhen the database is not fully
redundant, the DDM and Basic-Optimistic algorithms detect more conflicts
at the réad-phase, and they abort more transactions at the early stages

of processing, thus performing better than the timestamp algorithms.



The Wait-Die algorithm performs as well as the Basic Timestamp
algorithm, except wvhen most transactions are read-only. Then the Basic
Timestamp algorithm has higher throughput of read-only transactions than
the Wait-Die algorithm.

The Majority Consensus algorithm also performs poorly because it
delays lock conflict detection until transaction end, thus resulting in
many late transaction abortions. 1In fact, all certifier algorithms that
certify transactions at transaction end perform badly in the long tran-
saction environment. The Primary Site & Primary Site (C-C) and the Pri-
mary Copy & Primary Copy (P-P) algorithms also perform relatively well
vhen the database is fully redundant. These two algorithms abort fewer
transactions than the Basic Timestamp, Multiple Version Timestamp, DDM,
and Basic Optimistic algorithms, and the savings in transaction abor-
tions more than make up for the extrs communicstion messages required by
the two algorithms. The Basic-Basic algorithm does not perform as well
because it requires many more communication messages than other algo-
rithms.

To summarize, in this environment transaction blocking is better

than transaction abortion, and early lock conflict detection is better
than late detection.
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3 2/(R+¥) Loc/Com Redundant

E~> lov low full 5 2 2 1 2 2 3 3 4 2
high low full 5 2 2 1 2 2 3 3 4 3
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high high full 5 2 2 1 2 2 3 2 4 3

o low low part 5 2 2 1 3 3 1 1 4 2

oo high low part 5 33 2 3 3 1 1 4 3

;- lov  high part 5 2 2 1 3 3 1 1 4 2

}.‘ high high part 5 3 3 2 3 3 1 1 4 3

Rank 1 is best and Rank 6 is worst.

~ Rank numbers have no absolute meaning. They only show relative
" performance across a row, not a column, .
-%; R/W: "Ratio of Read-on1¥ transactions to Write transactions
o4 L/C: Ratio of Local delay to Communication delay, excluding
. queuing delay
N Red: Redundancy of the database

* ;: Does not matter

; : Figure 6.5 Performance Comparison: Long

ﬁ Transaction Loaded & I0 Bound

Y

is 6.4.4 Long Transactions & Communication Bound

o In this section, we compare the performance of distributed con-
';f currency control algorithms in a system environment in which most tran-

sactions are long and communication channel is the bottlemeck. The com-

,:; parison of these algorithms is summarized in Figure 6.6. The comparison
,sg is based on actual simulation results except for the Wait-Die and Major-
{§ ity Consensus algorithms. The evaluation of the Wait-Die algorithm is
— based on its similarity to the Basic Timestamp algorithm; and the
;3 evaluation of the Majority Consensus algorithm is based on its similar-
:it ity to the Basic Optimistic algorithm. A j
N

Figure 6.6 shows that six algorithms perform better than the oth- i
ers: Basic Timestamp, Multiple Version Timestamp, DDM, Basic Optimistic,

Basic Primary, and Wait-Die.

In this system environment (long transactions, heavy system load, :f§3~

1
4

and long communication delay) transactions conflict with each other more
often, byt only a fraction of the conflicts lead to deadlocks; thus,

transaction blocking is better than indiscriminate transaction abortionm.

S A5

Moreover, early lock conflict detection is better than procrastination.

IR
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"fb Lock conflicts detected at transaction end always lead to deadlocks.

The Basic Primary, DDM, Basic Optimistic, and to certain degree the

Cal

A:j Wait-Die algorithms use the blocking strategy; and the Basic Primary and
:; Wait-Die algorithms detect lock conflicts as early as possible. 1In
::' addition, because of long communication delay, algorithms requiring

extra communication messages may not perform well even if they use tran-

L saction blocking instead of transaction abortion. The DDM and the Basic
ﬁ“" Primary zlgorithms require extra communication messages in some cases.
o

! .'_"J'

The Basic Primary Copy algorithm performs the best when the data~-

e base is not fully redundant because it requires no more communication
j-,:‘ messages than the other algorithms, and because it causes fewer unneces-

«." sary transaction abortions, Even when the database is not fully redun-

\.' dant, if most transactions are write transactions and local delay is

:I: high relative to the communication delay, the Basic Primary Copy algo-

::Eij rithm still performs better than the Basic Timestamp, Multiple Version
h".- Timestamp, DDM, and Basic-Optimistic algorithms, because the latter

abort write transactions frequently. However, when the database is wes

._;.:',: fully redundant, the Basic Primary Copy algorithm requires more communi- :‘;:
:E cation messages than the Basic Timestamp, Multiple Version Timestamp, \\L
;j DDM, and Basic Optimistic algorithms. Thus, except for the cases above, f,:::.
B the extra communication messages required by the Basic Primary Copy :
E algorithm make its performance worse than that of the Basic Timestamp, 'F:',
’:f; Multiple Version Timestamp, DDM, and Basic-Optimistic algorithm in this ;.:'.:j'
,' ’::. communication bound environment. E:
_. The tinestuip based algorithms perform best when the database is &
:::jfs fully redundant, then read-only transactions incur no communication
delay and complete quickly. The read phase of write transactions also

':::Q;Z completes quickly. When read-only transactions and the read phase of

L) write transactions complete quickly, conflicts between read-only and

{‘:-; write transactions that result in abortion of the write transactions is

::-_(::7 reduced. Thus, unnecessary transaction abortion is reduced.

.,

The DDM method avoids conflicts between read-only tramsactions and

:-}:-; write transactions, but it pays with more abortions of write transac-

"'2 tions at transaction end. Thus, when most transactions are read-only,

'-\.j it performs very well. The higher throughput of read-only transactions

. P L'.
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make up for the extra abortion of write transactions. Notice that DDM

requires a extra round of communication messages for read-only transac~

?S; tions vhen the database is not fully redundant. Then its performance
Ef; degrades.
N
The Basic-Optimistic algorithm also performs well when most tran-
:?i sactions are read-only; then read-only transactions and the read phase
,iif of write transactions complete quickly., Otherwise it performs poorly
;;2 because the system is eventually saturated with many long write transac~-
\'u tions that later abort.
“;if The Wait-Die algorithm performs as well as the Baric Timestamp
-{;ﬁ algorithm when most transactions are write transactions, but not as well
—l:: vhen most transactions are read-only transactions, Since the Wait-Die
algorithm needs no overhead for maintaining data item timestamps, it is
) preferable to the timestamp based algorithms if most tramsactions are
- vrite transactions.
" The Basic & Basic, Primary Copy & Primary Copy, and Primary Site &
;j{ Primary Site algorithms perform poorly because they require more commun=-
iﬁ: ication messages than other algorithms. Communication overhead is
é:;: expensive in this communication bound environment.
a Z' To summarize, in this environment tramsaction blocking is better
iéi than transaction abortion, and early lock conflict detection is better
:Eﬁ than late detection. However, some algorithms that use these two stra-
:i- tegies may mnot perform well in some cases because they require extra
G2 communication messages.
N
NN
:;; 6.5 Conclusion
:;Qj We found that five of the twelve algorithms perform best in various
~'; system environments: Basic Timestamp, Multiple Version Timestamp, DDM,
Egi: Basic Optimistic, and Basic-Primary algorithms.
.’ When most transactions are short, concurrency control algorithms
,:f? that abort conflicting transactions (such as Basic Timestamp, Multiple

Version Timestamp algorithms) perform better than aslgorithms that block
conflicting transactions (such as the Basic Primary algorithm). In this




B~B P-P C-C B-P BaT MvT DDM Opm Maj Die
R/(R+W) Loc/Com Redundant :

low
high
low
high
low
high

OO
VUL
VAR
NSt ot i B bt 5 OV
LIRINIWI NI NI s s
(KT XY XTIRY XY XTI
=S NI = PO
(Y RYSTRYRTRYRY N
L Y- Y- Y- ¥.
QIR LI LILI PO NI =

high

low
high high

Rank 1 is best and Rank 6 is worst. ]
Bank numbers have no absolute meaning. They only show relative
performance across a row, not &8 columm, .

R/W: Ratio of Read-onlI transactions to Write transactions
L/C: Ratio of Local delay to Communication delay, excluding
queuing delay
Red: Redundancy of the database
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Figure 6.6 Performance Comparison: Long

Transactions & Communication Bound
environment, transactions conflict rarely; and when they do comnflict,
the blocking transactions tend to be longer than the average transaction
size and blocking delay long [LINN83]. If a two-phase locking algorithm
must be used, algorithms that delay lock conflict checking (such as the
DDM and the Basic Optimistic algorithms) perform better than those that
expedite léck conflict checking (such as the Basic Primary algorithm).
Unless the communication bandwidth is very high, communication delay can
devastate system performance; thus, the designer should reduce communi-
cation delay by locally controlling and accessing data as much as possi-
ble.

The issue of balancing communication delay against data distribu-
tion and replication is part of the complex problem of distributed data-
base design., Distributed database design must also take into account
the issues of distributed query processing and distributed database

reliability, and is beyond the scope of this handbook.

Behavior of systems that have long transactions is very different
from that of systems that have short transactions. Long transactions
degrade system performance very quickly because they have more transac-
tion conflicts. Since only a fraction of these conflicts results in

deadlocks, concurrency control algorithms that use transaction blocking
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often perform better than those that use transaction abortion indiscrim—

.. ~ inately. Moreover, concurrency algorithms that detect transaction con- .' .
o flict earlier often perform better than those that detect transaction

:i%: conflict later. The effect of communication delay on the performance of j?j%
> a system that has long transactions is even more devastating than the :-;
& effect on a system that has short transactions. Thus the designer must i{ﬂg
15: reduce communication delay as much as possible by controlling and : 'J

accessing data locally.

However, no matter which concurrency algorithm the desigy -+r uses, a

Y system that has long transactions always performs worse t ~ system

iﬁ that has short transactions. The designer should design tran .ioms to
'EES access as much data in parallel as possible, and to break long tramsac-

) tions into shorter transactions. Long transactions that cannot be bro-

:;j ken into shorter omes must be executed in background mode. -
::‘:E::: Our performance study shows that no one algorithm performs best imn ,
C%j all system and application enviromnments. If the system environment is :kﬁf
‘_" stable, the database designer can select one algorithm that performs ;f
;;ﬁ best in the environment. If the system environment is not stable, the i;i
{{: database designer can assign different weights to different environments 'fj}
%:f according to how often the system stays in each environment. The data- ?iii

,; base designer then selects the algorithm that has the best weighted f?f'
‘Sﬁi average performance. >
;ﬁ? From the results, we can 8lso conclude that the best algorithm

\N.' would be one that could be adjusted by the system administrator accord-
-:;} ing to the environment. The administrator would adjust the algorithm to
:;}: use transaction abortion and delay lock conflict detection whenever
iii transactions are short, and to use transaction blocking and detect 1lock
i:ﬁ conflicts as soon as possible whenever transactions are long. The adju-
.:Ei stable algorithm would also alternate, depending on the load on the com-
N munication channel, between algorithms that have more localized control
.Eis and algorithms that have more distributed control.
or
N
=
e
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7. Conclusion

The DDB Control and-Allocation Project has set out to achieve the

following objectives:

1. Review the distributed concurrency control research published in the
literature and incorporate that research into the taxonomy of the
distributed database concurrency control algorithms. Based on this
taxonomy, we would develop a new framework for distributed database

concurrency control,

2, Develop new distributed database concurrency control algorithms

using the framework developed in l.

3. Simulate the performance of the distributed database concurrency
control algorithms that are found to be dominant in the previous

study.

4, Build an analytical model of distributed database concurrency con-

trol.

5. Survey the current studies of reliability and recovery of distri-

buted database systems and the analysis of published algorithms.

6. Develop a framework for reliability and recovery of distributed
database systems.

7. Consolidate the results of the previous tasks into a system

designer”s handbook.

We have achieved these objectives, and the results are described in this

final technical report.

The first objective is achieved by means of the framework discussed
in Section II of Volume I, The framework facilitates the taxonomy of
distributed concurrency control algorithms by identifying the essential
component functions of distributed concurrency control mechanisms. This
framework is an excellent basis for further research in the standardiza-

tion of distributed concurrency control architecture.
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f:i The second objective of developing new algorithms using this frame- ;?:%n
“ vork is achieved by the new distributed concurrency control algorithms v @
:f\ described in Section III of Volume I. In this section, new algorithms ;fiﬁ
E;{ that store and use olier versions of data items are described. :x;g
The third objective of simulating and evaluating the performance of -;.
E& distributed database concurrency control algorithms is achieved by a :E:i
%ﬁ series of reports in the second volume. Sections II through V report &;il,
ii the relationship between the performance of various algorithms and the ]
- system parameters. Section VI summarizes the simulation results and :'f‘
compares the performance of twelve algorithms. The results of the ;i};-
second volume serve as an excellent basis for designing a distributed _:&(E
database designer’s aid. The Designer Aid would help the system ?{ ;
= designer to design distributed transactions, partition the database into if’f'
i; fragments, replicate and distribute the fragments, and choose the con- :}{l
55 currency control algorithm that performs best in his system environment. igi;
e RS
i:' The forth objective of amalytical modeling of the distributed con- :ﬂi
P currency control algorithms is achieved through the analytical models ot
k? described in Sections IV and V of Volume I. ﬂf;p
-t e
'?ﬁ The survey/study of reliability and recovery of distributed data- f -
) f base systems that achieves the fifth objective is reported in Sections ;
- VI through IX of Volume I and in the third semiannual technical report. }ﬁ:b
;S; Because the subject is relatively unexplored, only a few algorithms were f?t.
€2f reported. To discover new algorithms further research is needed. NS ‘
NG -
Y A framevork for the reliability and recovery of a distributed data- ?ﬁ
':i base system achieving the sixth objective is described in Section VII of % )
fE; Volume I. This framework captures the essential components of existing ;:‘f
fﬂ reliability and recovery algorithms. But, because research on this sub- e
ELﬁ ject is in its primitive stage, more research is needed to refine the .:& 4
%3; framework and to use it to develop more efficient algorithms. Moreover, T
:E the refined framework should become a basis for standardizing of distri-
}is buted reliability and recovery architecture.

Finally, these results have been summsrized in a separate distri-

a4
()

y
3.
P N Y

[N

buted database system designer”s handbook. This handbook can help the

designer to select a distributed concurrency control algorithm that per-
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"T- forms best in his system environment. Of course, an automated tool
_. would be more helpful to the designer. The sutomated tool would receive
:-Tj information from the designer about his system (e.g., system and appli-
cation parameters) and it would output to the designer information about
how to best design his system.
Overall we have accomplished what we set out to do; and in the pro-
-:'.j' cess ve came to understand more fully the mechanism of concurrency con-
._'-:', trol, reliability, and recovery of distributed database systems. The
o next step is to translate these results and this understanding into a
v ::f practical, integrated set of tools that aid distributed database
::: designers, and into & standard architecture of distributed DBMS that
_':: facilitates the interconnection of different DBMSs.
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A.

Notations used in the appendix are explained here and in the figures.

READ THROUGHPUT: average number of read-omly rezqeltl successfully

rocessed per unit time (excluding requests processed
gnd subleqsently aborted). "8 req pr

WRITE THROUGHPUT: Average number of write requests successfully

processed per unit time (excluding requests processed
and subsequently aborted).

Average Response Per Read Request: sverage time required to process
a read-only request.

Average Response Per Write Request: average time required to process
a write request.

Basic Basic
Prmry Prmry
Cntr

Basic Prmr
Basic Cntr
Basic Tstmp
Mltpl Versn
Basic Optms

Basic and Basic algorithm, )
Primary Copy and Primary Copy algorithm.
Primary Site and Primary Site algorithm.
Basic and Primary ngy algorithm.

Basic and Primary Site algorithm.

Basic Timestamp algorithm, = = | )
DDM Multiple Version and Optimistic algorithm.
Basic and Optimistic algorithm.
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® Multiple programming levels at the three site are 10{11/1}.
Ratio of local data procesaing & message processing de

Auun tion:
gﬁ for local processing is simulated.
s of local processing are simulated:
loaa e and data processing).
The round trip oouunicltion s fixed at 1
The local Bessag rocouing delay is fixed at
% of the ro trip compunication delay
The nuo of local dnu ocessing delay to round t.r:.p
oommunication delay shown colume 'JO/Comm'

Notation:

TZ = Average number of requests rr transaction,

DZ = Total number of data items in the database.

MP = Multiple programming level,

R/W = Ratio of read-only to write transactions.

JO/Com = Ratio of local data processing delay to
comnunication delay (excluding queueing z

Database Copies = Fraction o e database at each aite.
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2 * Multiple programming levels at the three site are 10{11/],.1. L
. Ratio of local data processing & message processing delay is 10 P
o9 Assumption: R ) :'-", Rt
gueue;n for local processing is simulated,
wo kinds of local processing ’re simulated:
Y (measage and data processing). |,
" The round trip communication 1s_fixed at 1
s The local message processing delay is fixed at
5% of the round trip communication delay . Zont
The ratio of local data processing delay to round trip e
> communication delay is shown in colume "IO/Comm"
4-.. Notation: .
TZ = Average number of requests per transaction.
! DZ = Total number of data items in the database.
YA MP = Multiple programming level. .
Puim R/W = Ratio of read-only to write transactions. -
( 10/Com = Ratio of local data processing delay to Sl
2 communication delay (excluding queueing). EOADA
o0 Database Copies = Fraction of the database at each site, A
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TZ=16,DZ=8192 ,MP=32
!Plll"llol Database Basic Basic I Mltpl Basic |
Com|Copies Prury Tstmp Versn Optms
* .25 ,2 1 1 1 | 2.4/7.3 9/26 3.6/8,6 4,3/10
* 75 .2 1 1 |2 ;6.5 64/19 “38/11  40/12
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% Multiple programming levels at the three site are 10/11/11.

Assumption: ) . ] ]
eueing for communication channel is simulated.
ly one kind of local processing is simulated.
The average round trzg communication is fixed at 1
The ratio of local data processing delay to ﬁou7d trip
communication delay is shown in colume "10/Comm

Notation: .

TZ = Average number of requests per tramsaction.

DZ = Total number of data items in the database.

MP = Multiple programming level. .

lly = Ratio of read-only to write transactions. _ |

I0/Com = Ratio ?f local processing delay to communication
delay (excluding queueing delay). .

Database Copies = Fraction of the database at each site.

Figure A.10 Throush—?ut (Read/Write): Long Transaction
Loaded & Communicaton Bound

HPIRIW'IO/'Datgbase Basic Basic Mltpl Basic l
Com|[Copies Prmry Tstmp Versn Optums
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* 253 1 1 1 3.?/7.8 2/2 z/a.f 3.5/4.6

* .75 2 } } } 3.i/8.8 2/2 2/3.1 2.8/4.3

* .25 .2 2/3 2/3 2/3 | 2.5/4.2 2/2  .86/3.7 2.2/2.8
B E3 38 | had A0 389 b

* 751 2/32/32/3 | 4.2/8.5 3.2/3.1 3.1/5.7 %.2/6.6

* Multiple programming levels at the three site are 10/11/11.

Assumption: .. .
8=eue1ng for communication channel is simulated.
ly one kind of local processing is simulated.
The average round trip communication is fixed at 1
The rstio of local data pgocell;ng,dela{ to pound trip
communication delay is shown in column "I0/Comm

Notation:

TZ = Average number of requests per transactionm.

DZ = Total number of data items in the database.

MP = Multiple prograsming level. .

ll’ = Ratio of read-only to write transactions. .

10/Com = Ratio 9f local processing delay to communication
delay (excluding queueing delay). .

Databsse Copies = Fraction of the database at each site.

Figure A.l11 Avera!e Response Time (Read/Write)
Long

ransaction & Communication Bound
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Rome Avr Development Center

RADC plans and executes nesearch, development, test and
selected acquisition programs in suppornt of Command, Control

‘ Communications and Intelligence (C31) activities. Technical

i and engineening suppont within areas of technical competence
A 48 provided to ESD Pregram O4fices (POs) and other ESD

-ti: efements. The principal technical mission areas are .
o communications, electromagnetic guidance and controf, sur- 0.
: veillance of ground and aerospace obiects, intelligence data ¢
-9 collecticn and handling, ingformation system technology, o
1. Lonospheric propagation, s0Lid state sciences, microwave

o physics and electronic neliability, maintainability and

o compatibility.
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